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Why Robot Learning With DeepRL?

camera
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monocular RGB

Option 1:

Understand the problem, design a solution

Option 2:

Set it up as a machine learning problem

supervised

learning
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Why Robot Learning With DeepRL?
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e There are many situations where traditional models are challenged

o Large state spaces
o Non-linear dynamics
o Discontinuous contacts
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What Problem is DeepRL Solving?

No feature engineering!

better aciio)n/’\
a

0

Figure: Deep Learning and Reinforcement Learning

e The perception and planning problem in a more general way.

V.
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What Problem is DeepRL Solving?

Sensor Motor Loop

sensorimotor loop

Figure: Sensory motor loop

e RL agents collect their own data to solve a task

o No need for expert data




Supervised Learning vs Reinforcement Learning

Supervised learning
e given D = {z;,y;}
o learn to predict y; given x;,
y <« fx)
e Assumptions in supervised learning

o Data is Independent and Identically
Distributed (IID)

e This is rarely the case in the real
world

o True optimal action y is known

e Example:
o L(9) = || f(]6) — ylI?
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Supervised Learning vs Reinforcement Learning

Supervised learning Reinforcement Learning
e given D = {z;,y;} e Previous outputs influence future
o learn to predict y; given x;, inputs
y <« f(z) o Data is not IID
e Assumptions in supervised learning e Optimal action ¥ is known
o Data is Independent and Identically o Instead, we have a scalar reward
Distributed (IID) function
e This is rarely the case in the real e reward function

world
o r+« R(s,a)

o True optimal action y is known o weighted regression

e Fxample: e Example:

o L(6) = || f(=]6) — yII? o L(8) = ||f(s]6) — a|]2R(s,a)
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What is Reinforcement Learning

7o (at|or)

Figure: First terms

e a; - Action

e a; - Continuous action
e s; - State

e 0; - Observation
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What is Reinforcement Learning

7o (at|or) at
Figure: First terms
e a; - Action e m(at|og, 0) policy
e a; - Continuous action o m(a|s¢, d) fully observed policy
e s; - State

0; - Observation
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What is Reinforcement Learning

7o (at|or)

Figure: First terms

e a; - Action e m(at|og, 0) policy

e a; - Continuous action o m(a|s¢, d) fully observed policy
e s; - State

e 0; - Observation

@) O (@)
Markov property

independent of s;_1

S S
p(str1lst, ar) \2/ p(str1lst, ar) ’

Figure: Markov property
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Reinforcement Learning Optimization

arg max g« B p(7(0) [Z:{ r(st, at)} arg max g- B prjg) [227(s, a)]

.. . e Infinite horizon case
e Finite horizon case
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Reinforcement Learning Optimization

arg max g« B p(7(0) [Z:{ r(st, at)} arg max g- B prjg) [227(s, a)]

.. . e Infinite horizon case
e Finite horizon case

¢ Reinforcement Learning uses Expectations

® r(s,a) - not smooth
e m(a = fallls,0)
* Er(|s,0)[7(5,a)] - smooth wrt ¢

Figure: Discontinuous Rewards
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Deep Reinforcement Learning Success Stories

- Jouer [ e )

The wait s over, Introducing SC2LE - an RL UMI [ o ]
environment based on StarCraft I from

DeepMind and Our Dota 2 Al i undefeated against the

world's bestsolo players:

Figure: Success Stories

(Silver et al., 2016; OpenAl et al., 2019; Berner et al., 2019; Li et al., 2021)
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Reinforcement Learning Objective

Figure: Reinforcement Learning Environment
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Reinforcement Learning Objective

W(}
& p(s’[s, a)

Figure: Reinforcement Learning Environment

e Distribution over trajectories p(7|) using chain rule of probability

p(s1,ai,...,st,ar|0) = p(s1) Hﬂ(at‘stae)p(st—f—l‘sbat) (1)
—~—~ —_—
p(7]6) unknown = unknown
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Reinforcement Learning Objective

‘ - a—

& p(s's, a)

Figure: Reinforcement Learning Environment

e Distribution over trajectories p(7|) using chain rule of probability

p(s1,ai,...,st,ar|0) = p(s1) Hﬂ(at‘stae)p(st—f—l‘sbat) (1)
—~—~ —_—
p(7]6) unknown = unknown

e RL objective is over this distribution

argmax K. -0 [ZT St, &y ] (2)
t

0*
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Basic Reinforcement Learning Loop: (1) Collect Data

St T't

- Estimate the return from

data o (at |0t )

9

Update the policy
parameters

Figure: Sensory motor loop
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Basic Reinforcement Learning Loop: (1) Collect Data

Collect Data
import gym

env = gym.make("LunarLander-v2") ## Create an instance of the control envi:
observation, info = env.reset(seed=42, return_info=True) ## Reset the envi:

buff = [] ## Array to store experience
for _ in range(1000):
env.render() ## Render the environment if desired
action = policy(observation) # User-defined policy function

next_observation, reward, done, info = env.step(action) ## Take a step :

buff.append([observation, action, reward, next_observation])
observation = next_observation
if done:

observation, info = env.reset(return_info=True) ## Reset if the robo!

env.close()
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Basic Reinforcement Learning Loop: (2) Estimate Return/Score

“¥  Estimate the return from

data  my(arlo)

| Update the policy
& parameters

Figure: Sensory motor loop
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Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Estimate the return for 0
S

t Tt Q
VadR
Estimate the return from

data my(asfor)

@D

- y Update the policy
& parameters

Collect more experience

Qg
Figure: Sensory motor loop

Figure: Policy Gradient

J(0) = ETNP(TW) [Z r(st, at)] (3)

t
Examples: Reinforce (Williams, 1992; Sutton et al., 2000)
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Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Estimate Return

# create list at each index (t') is gamma”(t') * r_{t'}
discounted_rewards = discounts * rewards

# scalar: sum_{t'=0}"T gamma~(t') * r_{t'}
sum_of_discounted_rew = sum(discounted_rewards)

# list where each entry t contains the same thing
# it contains sum_{t'=0}"T gamma"t' r_{t'}
discounted_returns = np.ones_like(rewards) * sum_of_discounted_rew

# For each (s_t, a_t), discounted sum of rewards over trajectory
# Aka: value of (s_t, a_t) = sum_{t'=0}"T gamma"t' r_{t'}
g_values = np.concat([self._discounted_return(r) for r in rews_list])

15/
Glen Berseth 40‘




Basic Reinforcement Learning Loop: (3) Update The Policy

Update the policy
St T'¢

Z / ! 'I Estimate the return from

data Ty at ‘ Ot

i

Update the policy
parameters

Figure: Sensory motor loop



Basic Reinforcement Learning Loop: (3) Update The Policy

Update the policy
St 1t

L / . Estimate the retum from

data b7’ at ‘ Ot

=

Update the policy . o . .
parameters Flgure: POhCy Gradient

e 0+ aVyJ()
e « is the learning rate

Figure: Sensory motor loop
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Model-Based Reinforcement Learning

e Distribution over trajectories p(7|6) using chain rule of probability

T
p(s1,a1,...,sr,arld) = S1 HW ay[ss, 0) p(sit1lse; ar) (4)
\—v—’
p(:'r|9) unknown =1 learn this

Start by training a model.
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Must train a Model

e Model-Based Reinforcement Learning (MBRL)
e Why learn a model?

o For most problems, the dynamics are unknown
o If we have s;y1 = f(st,a;) we can plan

e Then all we need to do is learn s;11 = f(s¢, a;), that should be easy.
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Must train a Model

e MBRL
e Why learn a model?

o For most problems, the dynamics are unknown
o If we have s;y1 = f(st,a;) we can plan

e Then all we need to do is learn s;11 = f(s¢, a;), that should be easy.

Basic MBRL

1. Collect experience < Si41,8¢, a; >€ Dipainfrom the environment with 7y(ay|s;)
2. Train 6 to minimize ), || f(s¢, a¢, 0) — si41]]
3. Use f(sty1]st,as,8) to plan high reward trajectories

(Wang et al., 2018)
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How Well Does Basic MBRL Work?




How Well Does Basic MBRL Work?

e Not that well, why?
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How Well Does Basic MBRL Work?

e Not that well, why?

Basic MBRL

1: Collect experience < St¢41,St,a¢ >E Dipainfrom
the environment with myanq(at|st)

2: Train 6 to minimize Y, || f(st, a¢,0) — s¢41]|

3: Use f(st+1]st,at, 0) to plan high value
trajectories

e Goal: Move higher
e But: mand(at|st) # m(ag|st, 0)

e Problem grows with model complexity
3 ‘ y



How to train a forward model

e How to reduce myang(a¢|st) # m(a¢lst, 0)
e Ideas?
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How to train a forward model

e How to reduce myang(a¢|st) # m(a¢lst, 0)
e Ideas?

e Need more on policy data [Dagger|(Ross et al., 2011)
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How to train a forward model

e How to reduce myang(a¢|st) # m(a¢lst, 0)
e Ideas?
e Need more on policy data [Dagger|(Ross et al., 2011)

OnPolicy MBRL

: Collect experience < S¢41,S¢,a¢ >€ Dirain from the environment with mang(a¢|st)
while true do

Train 6 to minimize ), || f(s¢,a¢,0) — s¢t1]

Use f(s¢+1|s¢,at, 0) to plan high value trajectories

Collect experience < S¢41,St,a; >€ Dirainfrom the environment with f(si41[s¢, a,6)
end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)
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How to train a forward model

e How to reduce myang(a¢|st) # m(a¢lst, 0)
e Ideas?

e Need more on policy data [Dagger|(Ross et al., 2011)

OnPolicy MBRL

1: Collect experience < S¢41, 8¢, at >E€ Dirain from the environment with mana(a|st)
2: while true do

3: Train 6 to minimize ), || f(s¢,a¢,0) — s¢t1]

4 Use f(s¢+1|s¢,at, 0) to plan high value trajectories

5: Collect experience < S¢41,St,a; >€ Dirainfrom the environment with f(si41[s¢, a,6)
6: end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)

e What is wrong with this algorithm?
o Hint: What objective is it optimizing?

2()/
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Model-Free Reinforcement Learning

e Distribution over trajectories p(7|6) using chain rule of probability

T
p(s1,ai,...,sr,arld) = p(si1) Hﬂ(at\st-, 0) p(st+1lst, ar) (5)
t=1
p(70) Unknown Now unknown

e RL objective is over this distribution

argmax E. - g) [Z r(st, at)] (6)

6" ;

e MBRL is not optimizing for the RL objective.

o (Joseph et al., 2013; Farahmand et al., 2017; Janner et al., 2019; Grimm et al.,
2020; Lambert et al., 2020; Nikishin et al., 2022)

21/
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The Policy Gradient

0* = arg glax ETNP(T|9) [Z T‘(St, at)]

t

\

J(0)
(7)

e How can we use this?

Glen Berseth



The Policy Gradient

0" = arg znax ) [Z r(st, at)] /
t

(7)

e How can we use this?

e Approximate with samples from the Figure: Simple policy Gradient
environment
T
J(8) = Errp(rio) [Z st, ay ] ~ Z Z St 8n,t) (8)

Glen Berseth



The Policy Gradient

0" = arg znax ) [Z r(st, at)] /
t

(7)

e How can we use this?
e Approximate with samples from the Figure: Simple policy Gradient

environment
T
JO) = By [z ] SES D WTIE ®

n

e Unbiased estimate of the expected value
e Simple to perform direct gradient ascent

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)
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Reducing Variance: Baselines

o VoJ(0) = % Zf\il Vlog p(T)r(7)

e Average reward
° b= % YL, r(7) S

o Reweight trajectories by their average
performance

Figure: Policy Gradient
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Reducing Variance: Baselines

o VoJ(0) = & SN, Viegp(r)r(r)
e Average reward
o by =4 XL, () /%’*
o Reweight trajectories by their average @
performance —

. . . . Figure: Policy Gradient
e Will this change the optimal policy?

e E[Vglogp(T|0)b] = [ p(T)Velogp(r|0)bdr
o Use identity
o [Vop(r|0)bdr = bV [ p(7]0)dT = bVyl =0

o Same optimal policy
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Basic Reinforcement Learning Loop: Update Policy

Update Policy

def update(self, observations, acs_na, adv_n=None, acs_labels_na=None, |qva
observations = ptu.from_numpy(observations)
actions = ptu.from_numpy(acs_na)
adv_n = ptu.from_numpy(adv_n)
action_distribution = self.policy(observations)
loss = - action_distribution.log_prob(actions) * adv_n
loss = loss.mean()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

24/
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Creating an RL Environment for a Robot

- Estimate the return from

data TTo (at |0t )

St T'¢

A

Figure: Robot: sensory motor loop
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Load your robot model

e (Create a simulated environment for the control loop
o Or a real environment

e (Create a reward function
o Easy in simulation, often difficult in the real world

OpenAiGym API

env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)

Glen Berseth



DeepRL and Robotics

OpenAIGym Wrappers for Preprocessing

## Deep Networks like outputs in [-1,1]

env = gym.wrappers.ClipAction(env)

## Deep Networks like inputs in [-1,1]

env = gym.wrappers.NormalizeObservation(env)
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, 110,
## DeepRL likes rewards [-1,1]

env = gym.wrappers.NormalizeReward(env, gamma=gamma)
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, |-10

e This way, learning rates, etc, have meaning

27/
Glen Berseth 40‘




Deep Reinforcement Learning Algorithms

e Model-Based Reinforcement
Learning

RL Algorithms

e Stochastic Policy Gradients c l
e Reinforce, NPO, TRPO, PPO,
Actor-Critic ﬁﬁ

Policy Optimization

‘ Q-Learning Learn the Model Given the Model

e Q-Learning

L ApprOXimate Dynamic ‘P“"stad‘e"f - 'War\dMode\s' L» Apazero |
Programming ‘“C’“‘ =
3 QRDQN MBMF
e Important to consider the Deep —

. . ‘ TRPO MBVE
Network ingredient.

Flgur(,. RL algorlthm taxonomy (spi, 2020)

28/
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Many RL libraries to use

Stable Baselines: Good place to start

cleanrl: simple implementations of RL algorithms
rlkit: Designed for robotics applications
tf_agents: Based on deepmind applications

Many others..

29/
Glen Berseth 40‘


https://github.com/milarobotlearningcourse/ift6163_homeworks

Many RL libraries to use

e Stable Baselines: Good place to start

e cleanrl: simple implementations of RL algorithms
e rlkit: Designed for robotics applications

e tf agents: Based on deepmind applications

e Many others..

e Learn how to use RL first with simple examples
o See my class

e Then upgrade to code for real experiments.

29/
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https://github.com/milarobotlearningcourse/ift6163_homeworks

Example: Distributed PPO

e Learning to navigate obstacles from
vision S CorS T A
e Works across morphologies
e Used distributed computation to
speed up training speed
e Not the best motion. ..
e Heess et al. (2017) Figure: Emergent Behaviours

parkor
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https://youtu.be/hx_bgoTF7bs

Q-learning (off-policy)

Estimate the action valued function
° Q(sp,a) =Ep, [ZtT/:t r(St4+1,ae41) | Staat]
Reward for taking action a; in state s; and then following policy Q™ (s, at)
Recursive definition, use dynamic programming
© L =E(sas)mpana |Qo(st, 1) = (r(sy,a;) + ymaxa Q(s', ')
How to use

o Act using aj « argmax , Q(ss,a;, §)

Stability issues training Q functions
Policy changes rapidly, Q values unbounded

31/
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Example: DQN (Atari)

e Playing Atari with deep
reinforcement learning, Mnih et al. Human-level control through deep
(2015) "

e (Q-learning with convolutional neural
networks

e Epsilon greedy exploration

Target Networks

Figure: DQN on Atariw

Breakout
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https://www.youtube.com/watch?v=TmPfTpjtdgg

Many RL Algorithms

Different trade-offs

o Sample efficiency
o Ease of coding and stability

Different environment assumptions
o Episodic vs infinite horizon
o Continuous/Discrete
o Deterministic vs Stochastic
Different types of MDPs

o Real-world constraints

When to use which one?

Glen Berseth



Often Not about Sample Efficiency

e Often about stability
e Will the algorithm converge with enough data?
e What does it converge to?
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Often Not about Sample Efficiency

Often about stability
Will the algorithm converge with enough data?
What does it converge to?

Supervised learning doesn’t have these concerns
o Can always use gradient descent

Reinforcement learning: often not gradient descent

o Q-learning: fixed point iteration
o Model-based RL: model is not optimized for expected reward
o Policy gradient: is gradient descent, but also often the least efficient

34/
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What are we even doing..?”

e Value function fitting
o At best, minimizes error of fit (“Bellman error”)
e Not the same as expected reward
o At worst, doesn’t optimize anything

e Many popular deep RL value fitting algorithms are not guaranteed to converge to
anything in the nonlinear or non-tabular case

e Model-based RL
o Model minimizes error of fit
e This does converge
o No guarantee that better model = better policy
e Policy gradient
o The only method actually performs gradient descent (ascent) on the true objective

35/
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So-called Assumptions

e Common assumption #1: full observability
o Often assumed when training the value function
o Or can be compensated with LSTM
e Common assumption #2: episodic learning
o Often assumed by pure policy gradient methods
o Assumed by some model-based RL methods
e Common assumption #3: continuity or smoothness

o Assumed by some continuous value function learning methods
o Often assumed by some model-based RL methods

Glen Berseth



DeepRL Tutorial

o cleanrl:

e Setup code here.
o https://github.com /milarobotlearningcourse/cleanrl /blob/master /roble_install.md

Glen Berseth


https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble_install.md
https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous_action.py

DeepRL Tutorial

o cleanrl:

e Setup code here.

o https://github.com /milarobotlearningcourse/cleanrl /blob/master /roble_install.md
¢ Fix code in ppo_continuous_action.py

)

https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous.
o look for “TODO ##”
o Ask questions!
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https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble_install.md
https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous_action.py

Scratch

Glen Berseth



Scratch
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e Possibly some material from Sergey Levine’s deepRL course

40
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