
Robot Learning
Deep Reinforcement Learning: Tutorial

Glen Berseth

Université de Montréal and Mila Québec AI Institute

October 15, 2025

Glen Berseth Robot Learning 1/40

1/40

Outline

Why Robot Learning With DeepRL?

Supervised Learning vs Reinforcement Learning

Model-Based Reinforcement Learning

Model-Free Reinforcement Learning

Creating an RL Environment for a Robot

Glen Berseth Robot Learning 2/40

2/40

Why Robot Learning With DeepRL?

• There are many situations where traditional models are challenged
◦ Large state spaces
◦ Non-linear dynamics
◦ Discontinuous contacts

Glen Berseth Robot Learning 3/40

3/40

Why Robot Learning With DeepRL?

• There are many situations where traditional models are challenged
◦ Large state spaces
◦ Non-linear dynamics
◦ Discontinuous contacts

Glen Berseth Robot Learning 3/40

3/40

Why Robot Learning With DeepRL?

• There are many situations where traditional models are challenged
◦ Large state spaces
◦ Non-linear dynamics
◦ Discontinuous contacts

Glen Berseth Robot Learning 3/40

3/40

What Problem is DeepRL Solving?

No feature engineering!

Figure: Deep Learning and Reinforcement Learning

• The perception and planning problem in a more general way.

Glen Berseth Robot Learning 4/40

4/40

What Problem is DeepRL Solving?

Sensor Motor Loop

Figure: Sensory motor loop

• RL agents collect their own data to solve a task
◦ No need for expert data

Glen Berseth Robot Learning 5/40

5/40

Supervised Learning vs Reinforcement Learning

Supervised learning

• given D = {xi, yi}
◦ learn to predict yi given xi,

y ← f(x)

• Assumptions in supervised learning
◦ Data is Independent and Identically

Distributed (IID)

• This is rarely the case in the real
world

◦ True optimal action y is known

• Example:
◦ L(θ) = ||f(x|θ)− y||2

Glen Berseth Robot Learning 6/40

6/40

Supervised Learning vs Reinforcement Learning

Supervised learning

• given D = {xi, yi}
◦ learn to predict yi given xi,

y ← f(x)

• Assumptions in supervised learning
◦ Data is Independent and Identically

Distributed (IID)

• This is rarely the case in the real
world

◦ True optimal action y is known

• Example:
◦ L(θ) = ||f(x|θ)− y||2

Reinforcement Learning

• Previous outputs influence future
inputs
◦ Data is not IID

• Optimal action y is known
◦ Instead, we have a scalar reward

function

• reward function
◦ r ← R(s, a)
◦ weighted regression

• Example:
◦ L(θ) = ||f(s|θ)− a||2R(s, a)

Glen Berseth Robot Learning 7/40

7/40

What is Reinforcement Learning

Figure: First terms

• at - Action
• at - Continuous action
• st - State
• ot - Observation

• π(at|ot, θ) policy
• π(at|st, θ) fully observed policy

Figure: Markov property

Glen Berseth Robot Learning 8/40

8/40

What is Reinforcement Learning

Figure: First terms

• at - Action
• at - Continuous action
• st - State
• ot - Observation

• π(at|ot, θ) policy
• π(at|st, θ) fully observed policy

Figure: Markov property

Glen Berseth Robot Learning 8/40

8/40

What is Reinforcement Learning

Figure: First terms

• at - Action
• at - Continuous action
• st - State
• ot - Observation

• π(at|ot, θ) policy
• π(at|st, θ) fully observed policy

Figure: Markov property

Glen Berseth Robot Learning 8/40

8/40

Reinforcement Learning Optimization

argmax θ∗ Eτ∼p(τ |θ)

[∑T
t r(st,at)

]
• Finite horizon case

argmax θ∗ Eτ∼p(τ |θ) [
∑

r(s, a)]

• Infinite horizon case

˜

• Reinforcement Learning uses Expectations

Figure: Discontinuous Rewards

• r(s, a) - not smooth
• π(a = fall|s, θ)
• Eπ(·|s,θ)[r(s, a)] - smooth wrt θ

Glen Berseth Robot Learning 9/40

9/40

Reinforcement Learning Optimization

argmax θ∗ Eτ∼p(τ |θ)

[∑T
t r(st,at)

]
• Finite horizon case

argmax θ∗ Eτ∼p(τ |θ) [
∑

r(s, a)]

• Infinite horizon case

˜

• Reinforcement Learning uses Expectations

Figure: Discontinuous Rewards

• r(s, a) - not smooth
• π(a = fall|s, θ)
• Eπ(·|s,θ)[r(s, a)] - smooth wrt θ

Glen Berseth Robot Learning 9/40

9/40

Deep Reinforcement Learning Success Stories

Figure: Success Stories

(Silver et al., 2016; OpenAI et al., 2019; Berner et al., 2019; Li et al., 2021)
Glen Berseth Robot Learning 10/40

10/40

Reinforcement Learning Objective

Figure: Reinforcement Learning Environment

• Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
unknown

(1)

• RL objective is over this distribution

argmax
θ∗

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(2)

Glen Berseth Robot Learning 11/40

11/40

Reinforcement Learning Objective

Figure: Reinforcement Learning Environment

• Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
unknown

(1)

• RL objective is over this distribution

argmax
θ∗

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(2)

Glen Berseth Robot Learning 11/40

11/40

Reinforcement Learning Objective

Figure: Reinforcement Learning Environment

• Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
unknown

(1)

• RL objective is over this distribution

argmax
θ∗

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(2)

Glen Berseth Robot Learning 11/40

11/40

Basic Reinforcement Learning Loop: (1) Collect Data

Figure: Sensory motor loop

Glen Berseth Robot Learning 12/40

12/40

Basic Reinforcement Learning Loop: (1) Collect Data

Collect Data
import gym

env = gym.make("LunarLander-v2") ## Create an instance of the control environment

observation, info = env.reset(seed=42, return_info=True) ## Reset the environment to a safe state

buff = [] ## Array to store experience

for _ in range(1000):

env.render() ## Render the environment if desired

action = policy(observation) # User-defined policy function

next_observation, reward, done, info = env.step(action) ## Take a step in the env

buff.append([observation, action, reward, next_observation])

observation = next_observation

if done:

observation, info = env.reset(return_info=True) ## Reset if the robot has fallen

env.close()

Glen Berseth Robot Learning 13/40

13/40

Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Figure: Sensory motor loop

Estimate the return for θ

Figure: Policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(3)

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)

Glen Berseth Robot Learning 14/40

14/40

Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Figure: Sensory motor loop

Estimate the return for θ

Figure: Policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(3)

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)

Glen Berseth Robot Learning 14/40

14/40

Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Estimate Return

create list at each index (t') is gamma^(t') * r_{t'}

discounted_rewards = discounts * rewards

scalar: sum_{t'=0}^T gamma^(t') * r_{t'}

sum_of_discounted_rew = sum(discounted_rewards)

list where each entry t contains the same thing

it contains sum_{t'=0}^T gamma^t' r_{t'}

discounted_returns = np.ones_like(rewards) * sum_of_discounted_rew

For each (s_t, a_t), discounted sum of rewards over trajectory

Aka: value of (s_t, a_t) = sum_{t'=0}^T gamma^t' r_{t'}

q_values = np.concat([self._discounted_return(r) for r in rews_list])

Glen Berseth Robot Learning 15/40

15/40

Basic Reinforcement Learning Loop: (3) Update The Policy

Figure: Sensory motor loop

Update the policy

Figure: Policy Gradient

• θ ← θ + α∇θJ(θ)
• α is the learning rate

Glen Berseth Robot Learning 16/40

16/40

Basic Reinforcement Learning Loop: (3) Update The Policy

Figure: Sensory motor loop

Update the policy

Figure: Policy Gradient

• θ ← θ + α∇θJ(θ)
• α is the learning rate

Glen Berseth Robot Learning 16/40

16/40

Model-Based Reinforcement Learning

• Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
learn this

(4)

Start by training a model.

Glen Berseth Robot Learning 17/40

17/40

Must train a Model

• Model-Based Reinforcement Learning (MBRL)
• Why learn a model?
◦ For most problems, the dynamics are unknown
◦ If we have st+1 = f(st,at) we can plan

• Then all we need to do is learn st+1 = f(st,at), that should be easy.

Basic MBRL

1. Collect experience < st+1, st,at >∈ Dtrainfrom the environment with π0(at|st)
2. Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3. Use f(st+1|st,at, θ) to plan high reward trajectories

(Wang et al., 2018)

Glen Berseth Robot Learning 18/40

18/40

Must train a Model

• MBRL
• Why learn a model?
◦ For most problems, the dynamics are unknown
◦ If we have st+1 = f(st,at) we can plan

• Then all we need to do is learn st+1 = f(st,at), that should be easy.

Basic MBRL

1. Collect experience < st+1, st,at >∈ Dtrainfrom the environment with π0(at|st)
2. Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3. Use f(st+1|st,at, θ) to plan high reward trajectories

(Wang et al., 2018)

Glen Berseth Robot Learning 18/40

18/40

How Well Does Basic MBRL Work?

• Not that well, why?

Basic MBRL
1: Collect experience < st+1, st,at >∈ Dtrainfrom

the environment with πrand(at|st)
2: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3: Use f(st+1|st,at, θ) to plan high value
trajectories

• Goal: Move higher
• But: πrand(at|st) ̸= π(at|st, θ)

• Problem grows with model complexity

Glen Berseth Robot Learning 19/40

19/40

How Well Does Basic MBRL Work?

• Not that well, why?

Basic MBRL
1: Collect experience < st+1, st,at >∈ Dtrainfrom

the environment with πrand(at|st)
2: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3: Use f(st+1|st,at, θ) to plan high value
trajectories

• Goal: Move higher
• But: πrand(at|st) ̸= π(at|st, θ)

• Problem grows with model complexity

Glen Berseth Robot Learning 19/40

19/40

How Well Does Basic MBRL Work?

• Not that well, why?

Basic MBRL
1: Collect experience < st+1, st,at >∈ Dtrainfrom

the environment with πrand(at|st)
2: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3: Use f(st+1|st,at, θ) to plan high value
trajectories

• Goal: Move higher
• But: πrand(at|st) ̸= π(at|st, θ)

• Problem grows with model complexity

Glen Berseth Robot Learning 19/40

19/40

How to train a forward model

• How to reduce πrand(at|st) ̸= π(at|st, θ)
• Ideas?

• Need more on policy data [Dagger](Ross et al., 2011)

OnPolicy MBRL
1: Collect experience < st+1, st,at >∈ Dtrain from the environment with πrand(at|st)
2: while true do
3: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

4: Use f(st+1|st,at, θ) to plan high value trajectories
5: Collect experience < st+1, st,at >∈ Dtrainfrom the environment with f(st+1|st,at, θ)
6: end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)

• What is wrong with this algorithm?
◦ Hint: What objective is it optimizing?

Glen Berseth Robot Learning 20/40

20/40

How to train a forward model

• How to reduce πrand(at|st) ̸= π(at|st, θ)
• Ideas?

• Need more on policy data [Dagger](Ross et al., 2011)

OnPolicy MBRL
1: Collect experience < st+1, st,at >∈ Dtrain from the environment with πrand(at|st)
2: while true do
3: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

4: Use f(st+1|st,at, θ) to plan high value trajectories
5: Collect experience < st+1, st,at >∈ Dtrainfrom the environment with f(st+1|st,at, θ)
6: end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)

• What is wrong with this algorithm?
◦ Hint: What objective is it optimizing?

Glen Berseth Robot Learning 20/40

20/40

How to train a forward model

• How to reduce πrand(at|st) ̸= π(at|st, θ)
• Ideas?

• Need more on policy data [Dagger](Ross et al., 2011)

OnPolicy MBRL
1: Collect experience < st+1, st,at >∈ Dtrain from the environment with πrand(at|st)
2: while true do
3: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

4: Use f(st+1|st,at, θ) to plan high value trajectories
5: Collect experience < st+1, st,at >∈ Dtrainfrom the environment with f(st+1|st,at, θ)
6: end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)

• What is wrong with this algorithm?
◦ Hint: What objective is it optimizing?

Glen Berseth Robot Learning 20/40

20/40

How to train a forward model

• How to reduce πrand(at|st) ̸= π(at|st, θ)
• Ideas?

• Need more on policy data [Dagger](Ross et al., 2011)

OnPolicy MBRL
1: Collect experience < st+1, st,at >∈ Dtrain from the environment with πrand(at|st)
2: while true do
3: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

4: Use f(st+1|st,at, θ) to plan high value trajectories
5: Collect experience < st+1, st,at >∈ Dtrainfrom the environment with f(st+1|st,at, θ)
6: end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)

• What is wrong with this algorithm?
◦ Hint: What objective is it optimizing?

Glen Berseth Robot Learning 20/40

20/40

Model-Free Reinforcement Learning

• Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
Unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
Now unknown

(5)

• RL objective is over this distribution

argmax
θ∗

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(6)

• MBRL is not optimizing for the RL objective.
◦ (Joseph et al., 2013; Farahmand et al., 2017; Janner et al., 2019; Grimm et al.,

2020; Lambert et al., 2020; Nikishin et al., 2022)

Glen Berseth Robot Learning 21/40

21/40

The Policy Gradient

θ∗ = argmax
θ

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
︸ ︷︷ ︸

J(θ)

(7)

• How can we use this?

• Approximate with samples from the
environment

Figure: Simple policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
≈ 1

N

N∑
n

T∑
t

r(sn,t,an,t) (8)

• Unbiased estimate of the expected value
• Simple to perform direct gradient ascent

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)

Glen Berseth Robot Learning 22/40

22/40

The Policy Gradient

θ∗ = argmax
θ

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
︸ ︷︷ ︸

J(θ)

(7)

• How can we use this?
• Approximate with samples from the
environment

Figure: Simple policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
≈ 1

N

N∑
n

T∑
t

r(sn,t,an,t) (8)

• Unbiased estimate of the expected value
• Simple to perform direct gradient ascent

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)

Glen Berseth Robot Learning 22/40

22/40

The Policy Gradient

θ∗ = argmax
θ

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
︸ ︷︷ ︸

J(θ)

(7)

• How can we use this?
• Approximate with samples from the
environment

Figure: Simple policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
≈ 1

N

N∑
n

T∑
t

r(sn,t,an,t) (8)

• Unbiased estimate of the expected value
• Simple to perform direct gradient ascent

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)

Glen Berseth Robot Learning 22/40

22/40

Reducing Variance: Baselines

• ∇θJ(θ) =
1
N

∑N
i=1∇ log p(τ)r(τ)

• Average reward
◦ bt =

1
N

∑N
i=1 r(τ)

◦ Reweight trajectories by their average
performance

Figure: Policy Gradient

• Will this change the optimal policy?
• E[∇θ log p(τ |θ)b] =

∫
p(τ)∇θ log p(τ |θ)bdτ

◦ Use identity

•
∫
∇θp(τ |θ)bdτ = b∇θ

∫
p(τ |θ)dτ = b∇θ1 = 0

◦ Same optimal policy

Glen Berseth Robot Learning 23/40

23/40

Reducing Variance: Baselines

• ∇θJ(θ) =
1
N

∑N
i=1∇ log p(τ)r(τ)

• Average reward
◦ bt =

1
N

∑N
i=1 r(τ)

◦ Reweight trajectories by their average
performance

Figure: Policy Gradient
• Will this change the optimal policy?
• E[∇θ log p(τ |θ)b] =

∫
p(τ)∇θ log p(τ |θ)bdτ

◦ Use identity

•
∫
∇θp(τ |θ)bdτ = b∇θ

∫
p(τ |θ)dτ = b∇θ1 = 0

◦ Same optimal policy

Glen Berseth Robot Learning 23/40

23/40

Basic Reinforcement Learning Loop: Update Policy

Update Policy

def update(self, observations, acs_na, adv_n=None, acs_labels_na=None, qvals=None):

observations = ptu.from_numpy(observations)

actions = ptu.from_numpy(acs_na)

adv_n = ptu.from_numpy(adv_n)

action_distribution = self.policy(observations)

loss = - action_distribution.log_prob(actions) * adv_n

loss = loss.mean()

self.optimizer.zero_grad()

loss.backward()

self.optimizer.step()

Glen Berseth Robot Learning 24/40

24/40

Creating an RL Environment for a Robot

Figure: Robot: sensory motor loop

Glen Berseth Robot Learning 25/40

25/40

Load your robot model

• Create a simulated environment for the control loop
◦ Or a real environment

• Create a reward function
◦ Easy in simulation, often difficult in the real world

OpenAiGym API

env = gym.make(env_id)

env = gym.wrappers.RecordEpisodeStatistics(env)

Glen Berseth Robot Learning 26/40

26/40

DeepRL and Robotics

OpenAIGym Wrappers for Preprocessing

Deep Networks like outputs in [-1,1]

env = gym.wrappers.ClipAction(env)

Deep Networks like inputs in [-1,1]

env = gym.wrappers.NormalizeObservation(env)

env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))

DeepRL likes rewards [-1,1]

env = gym.wrappers.NormalizeReward(env, gamma=gamma)

env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))

• This way, learning rates, etc, have meaning

Glen Berseth Robot Learning 27/40

27/40

Deep Reinforcement Learning Algorithms

• Model-Based Reinforcement
Learning

• Stochastic Policy Gradients
• Reinforce, NPO, TRPO, PPO,
Actor-Critic

• Q-Learning
• Approximate Dynamic
Programming

• Important to consider the Deep
Network ingredient.

Figure: RL algorithm taxonomy (spi, 2020)

Glen Berseth Robot Learning 28/40

28/40

Many RL libraries to use

• Stable Baselines: Good place to start
• cleanrl: simple implementations of RL algorithms
• rlkit: Designed for robotics applications
• tf agents: Based on deepmind applications
• Many others..

• Learn how to use RL first with simple examples
◦ See my class

• Then upgrade to code for real experiments.

Glen Berseth Robot Learning 29/40

29/40

https://github.com/milarobotlearningcourse/ift6163_homeworks

Many RL libraries to use

• Stable Baselines: Good place to start
• cleanrl: simple implementations of RL algorithms
• rlkit: Designed for robotics applications
• tf agents: Based on deepmind applications
• Many others..

• Learn how to use RL first with simple examples
◦ See my class

• Then upgrade to code for real experiments.

Glen Berseth Robot Learning 29/40

29/40

https://github.com/milarobotlearningcourse/ift6163_homeworks

Example: Distributed PPO

• Learning to navigate obstacles from
vision

• Works across morphologies
• Used distributed computation to
speed up training speed

• Not the best motion. . .
• Heess et al. (2017) Figure: Emergent Behaviours

parkor

Glen Berseth Robot Learning 30/40

30/40

https://youtu.be/hx_bgoTF7bs

Q-learning (off-policy)

• Estimate the action valued function
◦ Qπ(st,at) = Epθ

[∑T
t′=t r(st+1,at+1) | st,at

]
• Reward for taking action at in state st and then following policy Qπ(st,at)
• Recursive definition, use dynamic programming
◦ L = E(s,a,s′)∼pdata

∥Qϕ(st,at)− (r(st,at) + γmaxa′ Qϕ(s
′, a′)∥2

• How to use
◦ Act using a∗t ← argmax at

Q(st,at, ϕ)

• Stability issues training Q functions
• Policy changes rapidly, Q values unbounded

Glen Berseth Robot Learning 31/40

31/40

Example: DQN (Atari)

• Playing Atari with deep
reinforcement learning, Mnih et al.
(2015)

• Q-learning with convolutional neural
networks

• Epsilon greedy exploration
• Target Networks

Figure: DQN on Atari

Breakout

Glen Berseth Robot Learning 32/40

32/40

https://www.youtube.com/watch?v=TmPfTpjtdgg

Many RL Algorithms

• Different trade-offs
◦ Sample efficiency
◦ Ease of coding and stability

• Different environment assumptions
◦ Episodic vs infinite horizon
◦ Continuous/Discrete
◦ Deterministic vs Stochastic

• Different types of MDPs
◦ Real-world constraints

• When to use which one?

Glen Berseth Robot Learning 33/40

33/40

Often Not about Sample Efficiency

• Often about stability
• Will the algorithm converge with enough data?
• What does it converge to?

• Supervised learning doesn’t have these concerns
◦ Can always use gradient descent

• Reinforcement learning: often not gradient descent
◦ Q-learning: fixed point iteration
◦ Model-based RL: model is not optimized for expected reward
◦ Policy gradient: is gradient descent, but also often the least efficient

Glen Berseth Robot Learning 34/40

34/40

Often Not about Sample Efficiency

• Often about stability
• Will the algorithm converge with enough data?
• What does it converge to?

• Supervised learning doesn’t have these concerns
◦ Can always use gradient descent

• Reinforcement learning: often not gradient descent
◦ Q-learning: fixed point iteration
◦ Model-based RL: model is not optimized for expected reward
◦ Policy gradient: is gradient descent, but also often the least efficient

Glen Berseth Robot Learning 34/40

34/40

What are we even doing..?

• Value function fitting
◦ At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

◦ At worst, doesn’t optimize anything

• Many popular deep RL value fitting algorithms are not guaranteed to converge to
anything in the nonlinear or non-tabular case

• Model-based RL
◦ Model minimizes error of fit

• This does converge

◦ No guarantee that better model = better policy

• Policy gradient
◦ The only method actually performs gradient descent (ascent) on the true objective

Glen Berseth Robot Learning 35/40

35/40

So-called Assumptions

• Common assumption #1: full observability
◦ Often assumed when training the value function
◦ Or can be compensated with LSTM

• Common assumption #2: episodic learning
◦ Often assumed by pure policy gradient methods
◦ Assumed by some model-based RL methods

• Common assumption #3: continuity or smoothness
◦ Assumed by some continuous value function learning methods
◦ Often assumed by some model-based RL methods

Glen Berseth Robot Learning 36/40

36/40

DeepRL Tutorial

• cleanrl:

• Setup code here.
◦ https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble install.md

• Fix code in ppo continuous action.py
◦

https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo continuous action.py
◦ look for “TODO ##”
◦ Ask questions!

Glen Berseth Robot Learning 37/40

37/40

https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble_install.md
https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous_action.py

DeepRL Tutorial

• cleanrl:

• Setup code here.
◦ https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble install.md

• Fix code in ppo continuous action.py
◦

https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo continuous action.py
◦ look for “TODO ##”
◦ Ask questions!

Glen Berseth Robot Learning 37/40

37/40

https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble_install.md
https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous_action.py

Scratch

Glen Berseth Robot Learning 38/40

38/40

Scratch

Glen Berseth Robot Learning 39/40

39/40

• Possibly some material from Sergey Levine’s deepRL course

Glen Berseth Robot Learning 40/40

40/40

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael
Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip
Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680, 2019.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics models.
May 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference
on machine learning (ICML-11), pages 465–472. Citeseer, 2011.

Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-Aware Loss
Function for Model-based Reinforcement Learning. In Aarti Singh and Jerry
Zhu, editors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 1486–1494. PMLR, 2017.

Glen Berseth Robot Learning 40/40

40/40

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value
equivalence principle for model-based reinforcement learning. pages 5541–5552,
November 2020.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to
control: Learning behaviors by latent imagination. pages 1–19, December 2019.

Nicolas Heess, T B Dhruva, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S M Ali Eslami, Martin Riedmiller,
and David Silver. Emergence of locomotion behaviours in rich environments.
July 2017.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your
model: Model-based policy optimization. June 2019.

Joshua Joseph, Alborz Geramifard, John W Roberts, Jonathan P How, and
Nicholas Roy. Reinforcement learning with misspecified model classes. In 2013
IEEE International Conference on Robotics and Automation, pages 939–946,
May 2013.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective
mismatch in model-based reinforcement learning. February 2020.

Glen Berseth Robot Learning 40/40

40/40

Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen
Berseth, and Koushil Sreenath. Reinforcement learning for robust parameterized
locomotion control of bipedal robots. International Conference on Robotics and
Automation (ICRA 2021), 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529–533, 2015.

Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon.
Control-Oriented Model-Based reinforcement learning with implicit
differentiation. AAAI, 36(7):7886–7894, June 2022.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob
McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian
Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s cube
with a robot hand. October 2019.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Geoffrey

Glen Berseth Robot Learning 40/40

40/40

Gordon, David Dunson, and Miroslav Dud́ık, editors, Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics,
volume 15 of Proceedings of Machine Learning Research, pages 627–635, Fort
Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Part 2: Kinds of RL algorithms — spinning up documentation.
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html,
2020. Accessed: 2023-1-16.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems, pages 1057–1063.
proceedings.neurips.cc, 2000.

Glen Berseth Robot Learning 40/40

40/40

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. NerveNet: Learning
structured policy with graph neural networks. February 2018.

Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn., 8(3):229–256, May 1992.

Glen Berseth Robot Learning 40/40

40/40

	Why Robot Learning With DeepRL?
	Supervised Learning vs Reinforcement Learning
	Model-Based Reinforcement Learning
	Model-Free Reinforcement Learning
	Creating an RL Environment for a Robot
	References

