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Why Robot Learning With DeepRL?

• There are many situations where traditional models are challenged
◦ Large state spaces
◦ Non-linear dynamics
◦ Discontinuous contacts
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What Problem is DeepRL Solving?

No feature engineering!

Figure: Deep Learning and Reinforcement Learning

• The perception and planning problem in a more general way.
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What Problem is DeepRL Solving?

Sensor Motor Loop

Figure: Sensory motor loop

• RL agents collect their own data to solve a task
◦ No need for expert data
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Supervised Learning vs Reinforcement Learning

Supervised learning

• given D = {xi, yi}
◦ learn to predict yi given xi,

y ← f(x)

• Assumptions in supervised learning
◦ Data is Independent and Identically

Distributed (IID)

• This is rarely the case in the real
world

◦ True optimal action y is known

• Example:
◦ L(θ) = ||f(x|θ)− y||2
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y ← f(x)

• Assumptions in supervised learning
◦ Data is Independent and Identically

Distributed (IID)

• This is rarely the case in the real
world

◦ True optimal action y is known

• Example:
◦ L(θ) = ||f(x|θ)− y||2

Reinforcement Learning

• Previous outputs influence future
inputs
◦ Data is not IID

• Optimal action y is known
◦ Instead, we have a scalar reward

function

• reward function
◦ r ← R(s, a)
◦ weighted regression

• Example:
◦ L(θ) = ||f(s|θ)− a||2R(s, a)
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What is Reinforcement Learning

Figure: First terms

• at - Action
• at - Continuous action
• st - State
• ot - Observation

• π(at|ot, θ) policy
• π(at|st, θ) fully observed policy

Figure: Markov property
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Reinforcement Learning Optimization

argmax θ∗ Eτ∼p(τ |θ)

[∑T
t r(st,at)

]
• Finite horizon case

argmax θ∗ Eτ∼p(τ |θ) [
∑

r(s, a)]

• Infinite horizon case

˜

• Reinforcement Learning uses Expectations

Figure: Discontinuous Rewards

• r(s, a) - not smooth
• π(a = fall|s, θ)
• Eπ(·|s,θ)[r(s, a)] - smooth wrt θ
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Deep Reinforcement Learning Success Stories

Figure: Success Stories

(Silver et al., 2016; OpenAI et al., 2019; Berner et al., 2019; Li et al., 2021)
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Reinforcement Learning Objective

Figure: Reinforcement Learning Environment

• Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
unknown

(1)

• RL objective is over this distribution

argmax
θ∗

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(2)
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Basic Reinforcement Learning Loop: (1) Collect Data

Figure: Sensory motor loop
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Basic Reinforcement Learning Loop: (1) Collect Data

Collect Data
import gym

env = gym.make("LunarLander-v2") ## Create an instance of the control environment

observation, info = env.reset(seed=42, return_info=True) ## Reset the environment to a safe state

buff = [] ## Array to store experience

for _ in range(1000):

env.render() ## Render the environment if desired

action = policy(observation) # User-defined policy function

next_observation, reward, done, info = env.step(action) ## Take a step in the env

buff.append([observation, action, reward, next_observation])

observation = next_observation

if done:

observation, info = env.reset(return_info=True) ## Reset if the robot has fallen

env.close()
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Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Figure: Sensory motor loop

Estimate the return for θ

Figure: Policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(3)

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)
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Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Estimate Return

# create list at each index (t') is gamma^(t') * r_{t'}

discounted_rewards = discounts * rewards

# scalar: sum_{t'=0}^T gamma^(t') * r_{t'}

sum_of_discounted_rew = sum(discounted_rewards)

# list where each entry t contains the same thing

# it contains sum_{t'=0}^T gamma^t' r_{t'}

discounted_returns = np.ones_like(rewards) * sum_of_discounted_rew

# For each (s_t, a_t), discounted sum of rewards over trajectory

# Aka: value of (s_t, a_t) = sum_{t'=0}^T gamma^t' r_{t'}

q_values = np.concat([self._discounted_return(r) for r in rews_list])
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Basic Reinforcement Learning Loop: (3) Update The Policy

Figure: Sensory motor loop

Update the policy

Figure: Policy Gradient

• θ ← θ + α∇θJ(θ)
• α is the learning rate
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Model-Based Reinforcement Learning

• Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
learn this

(4)

Start by training a model.
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Must train a Model

• Model-Based Reinforcement Learning (MBRL)
• Why learn a model?
◦ For most problems, the dynamics are unknown
◦ If we have st+1 = f(st,at) we can plan

• Then all we need to do is learn st+1 = f(st,at), that should be easy.

Basic MBRL

1. Collect experience < st+1, st,at >∈ Dtrainfrom the environment with π0(at|st)
2. Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3. Use f(st+1|st,at, θ) to plan high reward trajectories

(Wang et al., 2018)
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How Well Does Basic MBRL Work?

• Not that well, why?

Basic MBRL
1: Collect experience < st+1, st,at >∈ Dtrainfrom

the environment with πrand(at|st)
2: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3: Use f(st+1|st,at, θ) to plan high value
trajectories

• Goal: Move higher
• But: πrand(at|st) ̸= π(at|st, θ)

• Problem grows with model complexity
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How to train a forward model

• How to reduce πrand(at|st) ̸= π(at|st, θ)
• Ideas?

• Need more on policy data [Dagger](Ross et al., 2011)

OnPolicy MBRL
1: Collect experience < st+1, st,at >∈ Dtrain from the environment with πrand(at|st)
2: while true do
3: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

4: Use f(st+1|st,at, θ) to plan high value trajectories
5: Collect experience < st+1, st,at >∈ Dtrainfrom the environment with f(st+1|st,at, θ)
6: end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)

• What is wrong with this algorithm?
◦ Hint: What objective is it optimizing?
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Model-Free Reinforcement Learning

• Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
Unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
Now unknown

(5)

• RL objective is over this distribution

argmax
θ∗

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(6)

• MBRL is not optimizing for the RL objective.
◦ (Joseph et al., 2013; Farahmand et al., 2017; Janner et al., 2019; Grimm et al.,

2020; Lambert et al., 2020; Nikishin et al., 2022)
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The Policy Gradient

θ∗ = argmax
θ

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
︸ ︷︷ ︸

J(θ)

(7)

• How can we use this?

• Approximate with samples from the
environment

Figure: Simple policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
≈ 1

N

N∑
n

T∑
t

r(sn,t,an,t) (8)

• Unbiased estimate of the expected value
• Simple to perform direct gradient ascent

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)
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Reducing Variance: Baselines

• ∇θJ(θ) =
1
N

∑N
i=1∇ log p(τ)r(τ)

• Average reward
◦ bt =

1
N

∑N
i=1 r(τ)

◦ Reweight trajectories by their average
performance

Figure: Policy Gradient

• Will this change the optimal policy?
• E[∇θ log p(τ |θ)b] =

∫
p(τ)∇θ log p(τ |θ)bdτ

◦ Use identity

•
∫
∇θp(τ |θ)bdτ = b∇θ

∫
p(τ |θ)dτ = b∇θ1 = 0

◦ Same optimal policy
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Basic Reinforcement Learning Loop: Update Policy

Update Policy

def update(self, observations, acs_na, adv_n=None, acs_labels_na=None, qvals=None):

observations = ptu.from_numpy(observations)

actions = ptu.from_numpy(acs_na)

adv_n = ptu.from_numpy(adv_n)

action_distribution = self.policy(observations)

loss = - action_distribution.log_prob(actions) * adv_n

loss = loss.mean()

self.optimizer.zero_grad()

loss.backward()

self.optimizer.step()
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Creating an RL Environment for a Robot

Figure: Robot: sensory motor loop

Glen Berseth Robot Learning 25/40

25/40



Load your robot model

• Create a simulated environment for the control loop
◦ Or a real environment

• Create a reward function
◦ Easy in simulation, often difficult in the real world

OpenAiGym API

env = gym.make(env_id)

env = gym.wrappers.RecordEpisodeStatistics(env)
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DeepRL and Robotics

OpenAIGym Wrappers for Preprocessing

## Deep Networks like outputs in [-1,1]

env = gym.wrappers.ClipAction(env)

## Deep Networks like inputs in [-1,1]

env = gym.wrappers.NormalizeObservation(env)

env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))

## DeepRL likes rewards [-1,1]

env = gym.wrappers.NormalizeReward(env, gamma=gamma)

env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))

• This way, learning rates, etc, have meaning
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Deep Reinforcement Learning Algorithms

• Model-Based Reinforcement
Learning

• Stochastic Policy Gradients
• Reinforce, NPO, TRPO, PPO,
Actor-Critic

• Q-Learning
• Approximate Dynamic
Programming

• Important to consider the Deep
Network ingredient.

Figure: RL algorithm taxonomy (spi, 2020)
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Many RL libraries to use

• Stable Baselines: Good place to start
• cleanrl: simple implementations of RL algorithms
• rlkit: Designed for robotics applications
• tf agents: Based on deepmind applications
• Many others..

• Learn how to use RL first with simple examples
◦ See my class

• Then upgrade to code for real experiments.

Glen Berseth Robot Learning 29/40
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Example: Distributed PPO

• Learning to navigate obstacles from
vision

• Works across morphologies
• Used distributed computation to
speed up training speed

• Not the best motion. . .
• Heess et al. (2017) Figure: Emergent Behaviours

parkor
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Q-learning (off-policy)

• Estimate the action valued function
◦ Qπ(st,at) = Epθ

[∑T
t′=t r(st+1,at+1) | st,at

]
• Reward for taking action at in state st and then following policy Qπ(st,at)
• Recursive definition, use dynamic programming
◦ L = E(s,a,s′)∼pdata

∥Qϕ(st,at)− (r(st,at) + γmaxa′ Qϕ(s
′, a′)∥2

• How to use
◦ Act using a∗t ← argmax at

Q(st,at, ϕ)

• Stability issues training Q functions
• Policy changes rapidly, Q values unbounded
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Example: DQN (Atari)

• Playing Atari with deep
reinforcement learning, Mnih et al.
(2015)

• Q-learning with convolutional neural
networks

• Epsilon greedy exploration
• Target Networks

Figure: DQN on Atari

Breakout
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Many RL Algorithms

• Different trade-offs
◦ Sample efficiency
◦ Ease of coding and stability

• Different environment assumptions
◦ Episodic vs infinite horizon
◦ Continuous/Discrete
◦ Deterministic vs Stochastic

• Different types of MDPs
◦ Real-world constraints

• When to use which one?
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Often Not about Sample Efficiency

• Often about stability
• Will the algorithm converge with enough data?
• What does it converge to?

• Supervised learning doesn’t have these concerns
◦ Can always use gradient descent

• Reinforcement learning: often not gradient descent
◦ Q-learning: fixed point iteration
◦ Model-based RL: model is not optimized for expected reward
◦ Policy gradient: is gradient descent, but also often the least efficient
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What are we even doing..?

• Value function fitting
◦ At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

◦ At worst, doesn’t optimize anything

• Many popular deep RL value fitting algorithms are not guaranteed to converge to
anything in the nonlinear or non-tabular case

• Model-based RL
◦ Model minimizes error of fit

• This does converge

◦ No guarantee that better model = better policy

• Policy gradient
◦ The only method actually performs gradient descent (ascent) on the true objective
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So-called Assumptions

• Common assumption #1: full observability
◦ Often assumed when training the value function
◦ Or can be compensated with LSTM

• Common assumption #2: episodic learning
◦ Often assumed by pure policy gradient methods
◦ Assumed by some model-based RL methods

• Common assumption #3: continuity or smoothness
◦ Assumed by some continuous value function learning methods
◦ Often assumed by some model-based RL methods
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DeepRL Tutorial

• cleanrl:

• Setup code here.
◦ https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble install.md

• Fix code in ppo continuous action.py
◦

https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo continuous action.py
◦ look for “TODO ##”
◦ Ask questions!
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Scratch
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Scratch

Glen Berseth Robot Learning 39/40

39/40



• Possibly some material from Sergey Levine’s deepRL course
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