Robot Learning

Deep Reinforcement Learning: Tutorial

Glen Berseth

Université de Montréal and Mila Québec Al Institute

October 15, 2025

& Universite th £ Mila CIFAR

de Montréal "¢V

'/
Glen Berseth 40‘

Outline

Why Robot Learning With DeepRL?

Supervised Learning vs Reinforcement Learning

Model-Based Reinforcement Learning

Model-Free Reinforcement Learning

Creating an RL Environment for a Robot

2
/10,

Glen Berseth

Why Robot Learning With DeepRL?

camera

7 DoF robotic
manipulator

2-finger
gripper

object
bin

monocular RGB

Option 1:

Understand the problem, design a solution

Option 2:

Set it up as a machine learning problem

supervised

learning

3
/401

Why Robot Learning With DeepRL?

monocular RGB
camera
Option 1:

7 DoF robotic Understand the problem, design a solution

manipulator

2-finger
gripper

Option 2:

object
bin

Set it up as a machine learning problem

supervised

learning

e There are many situations where traditional models are challenged

o Large state spaces
o Non-linear dynamics
o Discontinuous contacts

3
/10,

Why Robot Learning With DeepRL?

monocular RGB
camera
Option 1:

7 DoF robotic Understand the problem, design a solution

manipulator

2-finger
gripper

Option 2:

object
bin

Set it up as a machine learning problem

supervised

learning

e There are many situations where traditional models are challenged

o Large state spaces
o Non-linear dynamics
o Discontinuous contacts

3
/10,

What Problem is DeepRL Solving?

No feature engineering!

better aciio)n/’\
a

0

Figure: Deep Learning and Reinforcement Learning

e The perception and planning problem in a more general way.

V.

4/4
Glen Berseth O‘

What Problem is DeepRL Solving?

Sensor Motor Loop

sensorimotor loop

Figure: Sensory motor loop

e RL agents collect their own data to solve a task

o No need for expert data

Supervised Learning vs Reinforcement Learning

Supervised learning
e given D = {z;,y;}
o learn to predict y; given x;,
y <« fx)
e Assumptions in supervised learning

o Data is Independent and Identically
Distributed (IID)

e This is rarely the case in the real
world

o True optimal action y is known

e Example:
o L(9) = || f(]6) — ylI?

°/
Glen Berseth 40‘

Supervised Learning vs Reinforcement Learning

Supervised learning Reinforcement Learning
e given D = {z;,y;} e Previous outputs influence future
o learn to predict y; given x;, inputs
y <« f(z) o Data is not IID
e Assumptions in supervised learning e Optimal action ¥ is known
o Data is Independent and Identically o Instead, we have a scalar reward
Distributed (IID) function
e This is rarely the case in the real e reward function

world
o r+« R(s,a)

o True optimal action y is known o weighted regression

e Fxample: e Example:

o L(6) = || f(=]6) — yII? o L(8) = ||f(s]6) — a|]2R(s,a)

/
Glen Berseth 40‘

What is Reinforcement Learning

7o (at|or)

Figure: First terms

e a; - Action

e a; - Continuous action
e s; - State

e 0; - Observation

®/
Glen Berseth 40‘

What is Reinforcement Learning

7o (at|or) at
Figure: First terms
e a; - Action e m(at|og, 0) policy
e a; - Continuous action o m(a|s¢, d) fully observed policy
e s; - State

0; - Observation

®/
Glen Berseth 40‘

What is Reinforcement Learning

7o (at|or)

Figure: First terms

e a; - Action e m(at|og, 0) policy

e a; - Continuous action o m(a|s¢, d) fully observed policy
e s; - State

e 0; - Observation

@) O (@)
Markov property

independent of s;_1

S S
p(str1lst, ar) \2/ p(str1lst, ar) ’

Figure: Markov property

°/
Glen Berseth 40‘

Reinforcement Learning Optimization

arg max g« B p(7(0) [Z:{ r(st, at)} arg max g- B prjg) [227(s, a)]

.. . e Infinite horizon case
e Finite horizon case

°/
Glen Berseth 40‘

Reinforcement Learning Optimization

arg max g« B p(7(0) [Z:{ r(st, at)} arg max g- B prjg) [227(s, a)]

.. . e Infinite horizon case
e Finite horizon case

¢ Reinforcement Learning uses Expectations

® r(s,a) - not smooth
e m(a = fallls,0)
* Er(|s,0)[7(5,a)] - smooth wrt ¢

Figure: Discontinuous Rewards

_@u

Deep Reinforcement Learning Success Stories

- Jouer [e)

The wait s over, Introducing SC2LE - an RL UMI [o]
environment based on StarCraft I from

DeepMind and Our Dota 2 Al i undefeated against the

world's bestsolo players:

Figure: Success Stories

(Silver et al., 2016; OpenAl et al., 2019; Berner et al., 2019; Li et al., 2021)

Glen Berseth

Reinforcement Learning Objective

Figure: Reinforcement Learning Environment

11/40
Glen Berseth y

Reinforcement Learning Objective

W(}
& p(s’[s, a)

Figure: Reinforcement Learning Environment

e Distribution over trajectories p(7|) using chain rule of probability

p(s1,ai,...,st,ar|0) = p(s1) Hﬂ(at‘stae)p(st—f—l‘sbat) (1)
—~—~ —_—
p(7]6) unknown = unknown

11/
Glen Berseth 40‘

Reinforcement Learning Objective

‘ - a—

& p(s's, a)

Figure: Reinforcement Learning Environment

e Distribution over trajectories p(7|) using chain rule of probability

p(s1,ai,...,st,ar|0) = p(s1) Hﬂ(at‘stae)p(st—f—l‘sbat) (1)
—~—~ —_—
p(7]6) unknown = unknown

e RL objective is over this distribution

argmax K. -0 [ZT St, &y] (2)
t

0*

11/
Glen Berseth 40‘

Basic Reinforcement Learning Loop: (1) Collect Data

St T't

- Estimate the return from

data o (at |0t)

9

Update the policy
parameters

Figure: Sensory motor loop

EEEE————————————.

Basic Reinforcement Learning Loop: (1) Collect Data

Collect Data
import gym

env = gym.make("LunarLander-v2") ## Create an instance of the control envi:
observation, info = env.reset(seed=42, return_info=True) ## Reset the envi:

buff = [] ## Array to store experience
for _ in range(1000):
env.render() ## Render the environment if desired
action = policy(observation) # User-defined policy function

next_observation, reward, done, info = env.step(action) ## Take a step :

buff.append([observation, action, reward, next_observation])
observation = next_observation
if done:

observation, info = env.reset(return_info=True) ## Reset if the robo!

env.close()

13
/401

Basic Reinforcement Learning Loop: (2) Estimate Return/Score

“¥ Estimate the return from

data my(arlo)

| Update the policy
& parameters

Figure: Sensory motor loop

_DU

Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Estimate the return for 0
S

t Tt Q
VadR
Estimate the return from

data my(asfor)

@D

- y Update the policy
& parameters

Collect more experience

Qg
Figure: Sensory motor loop

Figure: Policy Gradient

J(0) = ETNP(TW) [Z r(st, at)] (3)

t
Examples: Reinforce (Williams, 1992; Sutton et al., 2000)

_DOA

Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Estimate Return

create list at each index (t') is gamma”(t') * r_{t'}
discounted_rewards = discounts * rewards

scalar: sum_{t'=0}"T gamma~(t') * r_{t'}
sum_of_discounted_rew = sum(discounted_rewards)

list where each entry t contains the same thing
it contains sum_{t'=0}"T gamma"t' r_{t'}
discounted_returns = np.ones_like(rewards) * sum_of_discounted_rew

For each (s_t, a_t), discounted sum of rewards over trajectory
Aka: value of (s_t, a_t) = sum_{t'=0}"T gamma"t' r_{t'}
g_values = np.concat([self._discounted_return(r) for r in rews_list])

15/
Glen Berseth 40‘

Basic Reinforcement Learning Loop: (3) Update The Policy

Update the policy
St T'¢

Z / ! 'I Estimate the return from

data Ty at ‘ Ot

i

Update the policy
parameters

Figure: Sensory motor loop

Basic Reinforcement Learning Loop: (3) Update The Policy

Update the policy
St 1t

L / . Estimate the retum from

data b7’ at ‘ Ot

=

Update the policy . o . .
parameters Flgure: POhCy Gradient

e 0+ aVyJ()
e « is the learning rate

Figure: Sensory motor loop

_DOA

Model-Based Reinforcement Learning

e Distribution over trajectories p(7|6) using chain rule of probability

T
p(s1,a1,...,sr,arld) = S1 HW ay[ss, 0) p(sit1lse; ar) (4)
\—v—’
p(:'r|9) unknown =1 learn this

Start by training a model.

17/
Glen Berseth 40‘

Must train a Model

e Model-Based Reinforcement Learning (MBRL)
e Why learn a model?

o For most problems, the dynamics are unknown
o If we have s;y1 = f(st,a;) we can plan

e Then all we need to do is learn s;11 = f(s¢, a;), that should be easy.

18/
Glen Berseth 40‘

Must train a Model

e MBRL
e Why learn a model?

o For most problems, the dynamics are unknown
o If we have s;y1 = f(st,a;) we can plan

e Then all we need to do is learn s;11 = f(s¢, a;), that should be easy.

Basic MBRL

1. Collect experience < Si41,8¢, a; >€ Dipainfrom the environment with 7y(ay|s;)
2. Train 6 to minimize), || f(s¢, a¢, 0) — si41]]
3. Use f(sty1]st,as,8) to plan high reward trajectories

(Wang et al., 2018)

18/
Glen Berseth 40‘

How Well Does Basic MBRL Work?

How Well Does Basic MBRL Work?

e Not that well, why?

19/
Glen Berseth 40‘

How Well Does Basic MBRL Work?

e Not that well, why?

Basic MBRL

1: Collect experience < St¢41,St,a¢ >E Dipainfrom
the environment with myanq(at|st)

2: Train 6 to minimize Y, || f(st, a¢,0) — s¢41]|

3: Use f(st+1]st,at, 0) to plan high value
trajectories

e Goal: Move higher
e But: mand(at|st) # m(ag|st, 0)

e Problem grows with model complexity
3 ‘ y

How to train a forward model

e How to reduce myang(a¢|st) # m(a¢lst, 0)
e Ideas?

Glen Berseth

How to train a forward model

e How to reduce myang(a¢|st) # m(a¢lst, 0)
e Ideas?

e Need more on policy data [Dagger|(Ross et al., 2011)

Glen Berseth

How to train a forward model

e How to reduce myang(a¢|st) # m(a¢lst, 0)
e Ideas?
e Need more on policy data [Dagger|(Ross et al., 2011)

OnPolicy MBRL

: Collect experience < S¢41,S¢,a¢ >€ Dirain from the environment with mang(a¢|st)
while true do

Train 6 to minimize), || f(s¢,a¢,0) — s¢t1]

Use f(s¢+1|s¢,at, 0) to plan high value trajectories

Collect experience < S¢41,St,a; >€ Dirainfrom the environment with f(si41[s¢, a,6)
end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)

2()/
Glen Berseth 40

How to train a forward model

e How to reduce myang(a¢|st) # m(a¢lst, 0)
e Ideas?

e Need more on policy data [Dagger|(Ross et al., 2011)

OnPolicy MBRL

1: Collect experience < S¢41, 8¢, at >E€ Dirain from the environment with mana(a|st)
2: while true do

3: Train 6 to minimize), || f(s¢,a¢,0) — s¢t1]

4 Use f(s¢+1|s¢,at, 0) to plan high value trajectories

5: Collect experience < S¢41,St,a; >€ Dirainfrom the environment with f(si41[s¢, a,6)
6: end while

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)

e What is wrong with this algorithm?
o Hint: What objective is it optimizing?

2()/
Glen Berseth 40‘

Model-Free Reinforcement Learning

e Distribution over trajectories p(7|6) using chain rule of probability

T
p(s1,ai,...,sr,arld) = p(si1) Hﬂ(at\st-, 0) p(st+1lst, ar) (5)
t=1
p(70) Unknown Now unknown

e RL objective is over this distribution

argmax E. - g) [Z r(st, at)] (6)

6" ;

e MBRL is not optimizing for the RL objective.

o (Joseph et al., 2013; Farahmand et al., 2017; Janner et al., 2019; Grimm et al.,
2020; Lambert et al., 2020; Nikishin et al., 2022)

21/
Glen Berseth 40‘

The Policy Gradient

0* = arg glax ETNP(T|9) [Z T‘(St, at)]

t

\

J(0)
(7)

e How can we use this?

Glen Berseth

The Policy Gradient

0" = arg znax) [Z r(st, at)] /
t

(7)

e How can we use this?

e Approximate with samples from the Figure: Simple policy Gradient
environment
T
J(8) = Errp(rio) [Z st, ay] ~ Z Z St 8n,t) (8)

Glen Berseth

The Policy Gradient

0" = arg znax) [Z r(st, at)] /
t

(7)

e How can we use this?
e Approximate with samples from the Figure: Simple policy Gradient

environment
T
JO) = By [z] SES D WTIE ®

n

e Unbiased estimate of the expected value
e Simple to perform direct gradient ascent

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)

Glen Berseth

Reducing Variance: Baselines

o VoJ(0) = % Zf\il Vlog p(T)r(7)

e Average reward
° b= % YL, r(7) S

o Reweight trajectories by their average
performance

Figure: Policy Gradient

EEEEEE———————————

Reducing Variance: Baselines

o VoJ(0) = & SN, Viegp(r)r(r)
e Average reward
o by =4 XL, () /%’*
o Reweight trajectories by their average @
performance —

. . . . Figure: Policy Gradient
e Will this change the optimal policy?

e E[Vglogp(T|0)b] = [p(T)Velogp(r|0)bdr
o Use identity
o [Vop(r|0)bdr = bV [p(7]0)dT = bVyl =0

o Same optimal policy

Glen Berseth

Basic Reinforcement Learning Loop: Update Policy

Update Policy

def update(self, observations, acs_na, adv_n=None, acs_labels_na=None, |qva
observations = ptu.from_numpy(observations)
actions = ptu.from_numpy(acs_na)
adv_n = ptu.from_numpy(adv_n)
action_distribution = self.policy(observations)
loss = - action_distribution.log_prob(actions) * adv_n
loss = loss.mean()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

24/
Glen Berseth 40‘

Creating an RL Environment for a Robot

- Estimate the return from

data TTo (at |0t)

St T'¢

A

Figure: Robot: sensory motor loop

25
_DOA

Load your robot model

e (Create a simulated environment for the control loop
o Or a real environment

e (Create a reward function
o Easy in simulation, often difficult in the real world

OpenAiGym API

env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)

Glen Berseth

DeepRL and Robotics

OpenAIGym Wrappers for Preprocessing

Deep Networks like outputs in [-1,1]

env = gym.wrappers.ClipAction(env)

Deep Networks like inputs in [-1,1]

env = gym.wrappers.NormalizeObservation(env)
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, 110,
DeepRL likes rewards [-1,1]

env = gym.wrappers.NormalizeReward(env, gamma=gamma)
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, |-10

e This way, learning rates, etc, have meaning

27/
Glen Berseth 40‘

Deep Reinforcement Learning Algorithms

e Model-Based Reinforcement
Learning

RL Algorithms

e Stochastic Policy Gradients c l
e Reinforce, NPO, TRPO, PPO,
Actor-Critic ﬁﬁ

Policy Optimization

‘ Q-Learning Learn the Model Given the Model

e Q-Learning

L ApprOXimate Dynamic ‘P“"stad‘e"f - 'War\dMode\s' L» Apazero |
Programming ‘“C’“‘ =
3 QRDQN MBMF
e Important to consider the Deep —

. . ‘ TRPO MBVE
Network ingredient.

Flgur(,. RL algorlthm taxonomy (spi, 2020)

28/
Glen Berseth 40‘

Many RL libraries to use

Stable Baselines: Good place to start

cleanrl: simple implementations of RL algorithms
rlkit: Designed for robotics applications
tf_agents: Based on deepmind applications

Many others..

29/
Glen Berseth 40‘

https://github.com/milarobotlearningcourse/ift6163_homeworks

Many RL libraries to use

e Stable Baselines: Good place to start

e cleanrl: simple implementations of RL algorithms
e rlkit: Designed for robotics applications

e tf agents: Based on deepmind applications

e Many others..

e Learn how to use RL first with simple examples
o See my class

e Then upgrade to code for real experiments.

29/
Glen Berseth 40‘

https://github.com/milarobotlearningcourse/ift6163_homeworks

Example: Distributed PPO

e Learning to navigate obstacles from
vision S CorS T A
e Works across morphologies
e Used distributed computation to
speed up training speed
e Not the best motion. ..
e Heess et al. (2017) Figure: Emergent Behaviours

parkor

Glen Berseth

https://youtu.be/hx_bgoTF7bs

Q-learning (off-policy)

Estimate the action valued function
° Q(sp,a) =Ep, [ZtT/:t r(St4+1,ae41) | Staat]
Reward for taking action a; in state s; and then following policy Q™ (s, at)
Recursive definition, use dynamic programming
© L =E(sas)mpana |Qo(st, 1) = (r(sy,a;) + ymaxa Q(s', ')
How to use

o Act using aj « argmax , Q(ss,a;, §)

Stability issues training Q functions
Policy changes rapidly, Q values unbounded

31/
Glen Berseth 40‘

Example: DQN (Atari)

e Playing Atari with deep
reinforcement learning, Mnih et al. Human-level control through deep
(2015) "

e (Q-learning with convolutional neural
networks

e Epsilon greedy exploration

Target Networks

Figure: DQN on Atariw

Breakout

Glen Berseth

https://www.youtube.com/watch?v=TmPfTpjtdgg

Many RL Algorithms

Different trade-offs

o Sample efficiency
o Ease of coding and stability

Different environment assumptions
o Episodic vs infinite horizon
o Continuous/Discrete
o Deterministic vs Stochastic
Different types of MDPs

o Real-world constraints

When to use which one?

Glen Berseth

Often Not about Sample Efficiency

e Often about stability
e Will the algorithm converge with enough data?
e What does it converge to?

Glen Berseth

Often Not about Sample Efficiency

Often about stability
Will the algorithm converge with enough data?
What does it converge to?

Supervised learning doesn’t have these concerns
o Can always use gradient descent

Reinforcement learning: often not gradient descent

o Q-learning: fixed point iteration
o Model-based RL: model is not optimized for expected reward
o Policy gradient: is gradient descent, but also often the least efficient

34/
Glen Berseth 40‘

What are we even doing..?”

e Value function fitting
o At best, minimizes error of fit (“Bellman error”)
e Not the same as expected reward
o At worst, doesn’t optimize anything

e Many popular deep RL value fitting algorithms are not guaranteed to converge to
anything in the nonlinear or non-tabular case

e Model-based RL
o Model minimizes error of fit
e This does converge
o No guarantee that better model = better policy
e Policy gradient
o The only method actually performs gradient descent (ascent) on the true objective

35/
Glen Berseth 40‘

So-called Assumptions

e Common assumption #1: full observability
o Often assumed when training the value function
o Or can be compensated with LSTM
e Common assumption #2: episodic learning
o Often assumed by pure policy gradient methods
o Assumed by some model-based RL methods
e Common assumption #3: continuity or smoothness

o Assumed by some continuous value function learning methods
o Often assumed by some model-based RL methods

Glen Berseth

DeepRL Tutorial

o cleanrl:

e Setup code here.
o https://github.com /milarobotlearningcourse/cleanrl /blob/master /roble_install.md

Glen Berseth

https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble_install.md
https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous_action.py

DeepRL Tutorial

o cleanrl:

e Setup code here.

o https://github.com /milarobotlearningcourse/cleanrl /blob/master /roble_install.md
¢ Fix code in ppo_continuous_action.py

)

https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous.
o look for “TODO ##”
o Ask questions!

37/
Glen Berseth 40‘

https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble_install.md
https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous_action.py

Scratch

Glen Berseth

Scratch

Glen Berseth

e Possibly some material from Sergey Levine’s deepRL course

40
/10

Glen Berseth

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, Rafal Jézefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael
Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip
Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680, 2019.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics models.
May 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference
on machine learning (ICML-11), pages 465-472. Citeseer, 2011.

Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-Aware Loss
Function for Model-based Reinforcement Learning. In Aarti Singh and Jerry
Zhu, editors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Machine Learning

Research, pages 1486-1494. PMLR, 2017.

Glen Berseth

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value
equivalence principle for model-based reinforcement learning. pages 5541-5552,
November 2020.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to
control: Learning behaviors by latent imagination. pages 1-19, December 2019.

Nicolas Heess, T' B Dhruva, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S M Ali Eslami, Martin Riedmiller,
and David Silver. Emergence of locomotion behaviours in rich environments.
July 2017.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your
model: Model-based policy optimization. June 2019.

Joshua Joseph, Alborz Geramifard, John W Roberts, Jonathan P How, and
Nicholas Roy. Reinforcement learning with misspecified model classes. In 2018
IEEE International Conference on Robotics and Automation, pages 939-946,
May 2013.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective
mismatch in model-based reinforcement learning. February 2020.

Glen Berseth

Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen
Berseth, and Koushil Sreenath. Reinforcement learning for robust parameterized
locomotion control of bipedal robots. International Conference on Robotics and
Automation (ICRA 2021), 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529-533, 2015.

Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon.
Control-Oriented Model-Based reinforcement learning with implicit
differentiation. AAAI 36(7):7886-7894, June 2022.

OpenAl, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob
McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian
Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s cube
with a robot hand. October 2019.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation

learning and structured prediction to no-regret online learning. In Geoffrey
Glen Berseth

Gordon, David Dunson, and Miroslav Dudik, editors, Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics,
volume 15 of Proceedings of Machine Learning Research, pages 627635, Fort
Lauderdale, FL, USA, 11-13 Apr 2011. PMLR.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

Part 2: Kinds of RL algorithms — spinning up documentation.
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html,
2020. Accessed: 2023-1-16.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approximation.

In Advances in neural information processing systems, pages 1057-1063.

proceedings.neurips.cc, 2000.

Glen Berseth

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. NerveNet: Learning
structured policy with graph neural networks. February 2018.

Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn., 8(3):229-256, May 1992.

Glen Berseth

4()/4O

	Why Robot Learning With DeepRL?
	Supervised Learning vs Reinforcement Learning
	Model-Based Reinforcement Learning
	Model-Free Reinforcement Learning
	Creating an RL Environment for a Robot
	References

