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● This presentation uses material presented in the two papers:
○ SuperPoint: Self-Supervised Interest Point Detection and Description
○ SuperGlue: Learning Feature Matching with Graph Neural Networks

● This presentation also borrows from two presentations:
○ Deep Visual SLAM Frontends by Tomasz Malisiewicz at CVPR 2020
○ SuperGlue presentation by Paul‑Edouard Sarlin at CVPR 2020

● All images used are from the above-mentioned material, unless noted otherwise.



● Two parts of Visual SLAM
● Front-end

○ Feature extraction (SIFT, SURF, ORB)
○ Data Association (feature tracking, loop closure)

● Back-end
○ Optimize pose and 3D structure
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Motivation

Source: C. Cadena, L. Carlone, et al. “Past, Present, and Future of Simultaneous Localization 
And Mapping: Towards the Robust-Perception Age”
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Motivation



● Appearance changes: illumination, weather, sensor noise
● Viewpoint changes: perspective distortion, scale, occlusion
● Repetitive structures: many false matches (windows, tiles, trees)
● Textureless regions: few or no features (white walls, roads)
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Why is it so difficult?

Source: P. Lindenberger, P. Sarlin, et al. “LightGlue: 
Local Feature Matching at Light Speed”
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Why is it so difficult?

Source: J. Wang, N. Karaev, et al.  “Visual Geometry Grounded Deep Structure From Motion”



● SuperPoint
○ How to learn detectors & descriptors?
○ Can we train without labeled correspondences (self-supervised)?
○ How does it compare with earlier pipelines (e.g., LIFT, SIFT)?

● SuperGlue
○ How to learn the data association between two images?
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Research Questions



● Learning-based Approaches
○ Deep Learning & Neural Networks
○ Convolutional Neural Networks (CNNs)
○ Graph Neural Networks (GNNs)

● Matching with Heuristics
○ Nearest Neighbor
○ Ratio Test
○ Mutual Consistency Test

● Geometric Verification
○ Homography & Pose Estimation
○ Direct Linear Transform (DLT)
○ Essential & Fundamental Matrices
○ 5-point / 8-point Algorithms
○ Random Sample Consensus (RANSAC)

● Optimal Assignment Methods
○ Bipartite Matching
○ Hungarian Algorithm
○ Sinkhorn Iteration
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Preliminaries



● Detector Metrics:
○ Corner Detection Average Precision (AP) - Measures how well detected points align with ground-truth 

corners (Precision–Recall AUC). Higher AP = better.
○ Localization Error (LE) - Average pixel distance between detected points and their closest 

ground-truth corner. Lower is better.
○ Repeatability (Rep) - Probability a point is re-detected in a second view of the same scene. Higher is 

better.
● Descriptor and Matching Metrics

○ Nearest Neighbor mAP - Discriminativeness of descriptors via NN matching (Precision–Recall AUC). 
Higher = better descriptors.

○ Matching Score (MS) - Fraction of ground-truth correspondences recovered by the pipeline. 
Combines detection + description.

○ Homography Estimation Accuracy - Ability to recover the ground-truth homography by transforming 
image corners correctly.

○ Pose Estimation mAP - Area under the curve of relative pose error.
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Evaluation
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The art and craft of designing neural nets 
to replace SIFT.

SuperPoint



● CNN architecture 
○ VGG-like backbone

● Points + descriptors computed jointly, no patches
● No deconvolution layer
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Model Architecture 



● Siamese training with pairs of images
● Descriptor trained via metric learning (contrastive loss)
● Keypoints trained via supervised keypoint labels

○ Where do these come from?
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Model Training 



● Need large scale dataset of annotated images
● Too hard for humans to label
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How to get Keypoint Labels?



● Synthetic Training
○ Non-photorealistic shapes
○ Heavy noise
○ Effective and easy
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Self-Supervised Training



● Homographic Adaption
○ Use trained “MagicPoint” network
○ Simulate planar camera motion with homographies
○ Enhance repeatable points
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Self-Supervised Training
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Overview 
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Metrics
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Deep matching with SuperPoint: Can we 
learn to solve the correspondence 
problem?

SuperGlue



● Inputs
○ Images A and B
○ 2 sets of M, N local features (keypoints and descriptors)

● Outputs
○ Single a match per keypoint + occlusion using soft partial assignment

● Method
○ A Graph Neural Network (GNN) with attention

■ Encodes contextual cues & priors
■ Reasons about the 3D scene

○ Solving a optimal transport problem
■ Differentiable solver
■ Enforces the assignment constraints
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Overview 
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Architecture 



● Initial representation for each keypoint
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Attentional GNN 



● Update the representation based on other keypoints - using a Message Passing Neural Network
○ a complete graph with two types of edges
○ in the same image: “self” edges
○ in the other image: “cross” edges
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Attentional GNN 



● Compute the message using self and cross attention
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Attentional Aggregation 



● Self-attention = intra-image information flow
● Cross attention = inter-image
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Attentional Aggregation 



● Compute score matrix
● Occlusion and noise : unmatched keypoints are assigned to a dustbin
● Compute the partial assignment matrix

○ With the Sinkhorn algorithm: differentiable & soft Hungarian algorithm
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Optimal Matching Layer 



● Compute ground truth correspondences from pose and depth
● Find which keypoints should be unmatched
● Loss: maximize the log-likelihood of the GT cells in the partial assignment matrix
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Loss 
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Metrics 
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Qualitative Results 
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Qualitative Results 
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Qualitative Results 
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Qualitative Results 
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Run-time Analysis 
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Why should they have all the fun?

N = 1

Duckie Dataset
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Duckie Dataset 



ExamplesImage Feature Matching 35

Duckie Dataset 
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Duckie Dataset 
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Conclusions
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● Problem: Robust feature detection & matching is critical for SLAM, SfM, and localization, but remains 
challenging under viewpoint, illumination, and texture changes.

● SuperPoint:
○ Learned detector + descriptor in a single CNN.
○ Self-supervised pretraining (synthetic homographies) enables real-world generalization.

● SuperGlue:
○ Learned matching with graph neural networks and optimal transport.
○ Context-aware, consistent correspondences outperform descriptor-only matching.

● Key lesson: Learning helps both where we detect features (SuperPoint) and how we match them 
(SuperGlue).



● Earlier works
○ FAST - Features from Accelerated Segment Test
○ LIFT - Learned Invariant Feature Transform

● But can we learn generally useful image features?
○ DINO - Self-Distillation with No Labels

● Did the community just accept this approach?
○ DeDoDe - DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local Feature Matching
○ MatchFormer - MatchFormer: Interleaving Attention in Transformers for Feature Matching
○ GlueStick - GlueStick: Robust Image Matching by Sticking Points and Lines Together

● Need for speed
○ LightGlue - Local Feature Matching at Light Speed

● Who needs detectors anyway?
○ LoFTR - Detector-Free Local Feature Matching with Transformers
○ RoMA - Robust Dense Feature Matching

● Scaling transformers for pointmap prediction
○ DUSt3R / MASt3R - Geometric 3D Vision Made Easy
○ VGGT - Visual Geometry Grounded Transformer
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Other Relevant Work 



Questions?
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Questions?



Questions?
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Thank You!


