Image Feature Matching: SuperPoint and SuperGlue

IFT 6757 - Duckietown

Image Feature Matching Acknowledgments 2

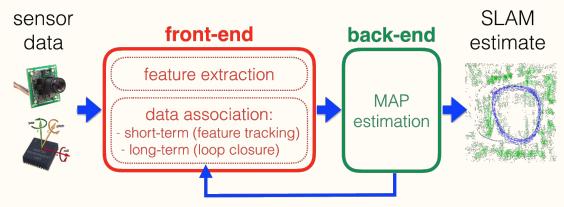
Acknowledgements

- This presentation uses material presented in the two papers:
 - SuperPoint: Self-Supervised Interest Point Detection and Description
 - SuperGlue: Learning Feature Matching with Graph Neural Networks
- This presentation also borrows from two presentations:
 - Deep Visual SLAM Frontends by Tomasz Malisiewicz at CVPR 2020
 - SuperGlue presentation by Paul-Edouard Sarlin at CVPR 2020
- All images used are from the above-mentioned material, unless noted otherwise.

Image Feature Matching Motivation 3

Motivation

- Two parts of Visual SLAM
- Front-end
 - Feature extraction (SIFT, SURF, ORB)
 - Data Association (feature tracking, loop closure)
- Back-end
 - Optimize pose and 3D structure



Source: C. Cadena, L. Carlone, et al. "Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age"

Image Feature Matching Motivation 4

Motivation

Image Feature Matching Why is it so difficult?

Why is it so difficult?

- Appearance changes: illumination, weather, sensor noise
- Viewpoint changes: perspective distortion, scale, occlusion
- Repetitive structures: many false matches (windows, tiles, trees)
- Textureless regions: few or no features (white walls, roads)

Source: P. Lindenberger, P. Sarlin, et al. "LightGlue: Local Feature Matching at Light Speed"

Image Feature Matching Why is it so difficult?

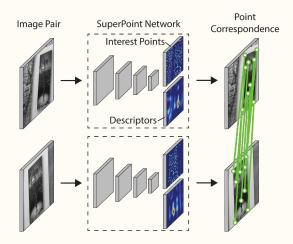
Why is it so difficult?

Source: J. Wang, N. Karaev, et al. "Visual Geometry Grounded Deep Structure From Motion"

Image Feature Matching Research Questions 7

Research Questions

- SuperPoint
 - How to learn detectors & descriptors?
 - Can we train without labeled correspondences (self-supervised)?
 - How does it compare with earlier pipelines (e.g., LIFT, SIFT)?
- SuperGlue
 - How to learn the data association between two images?



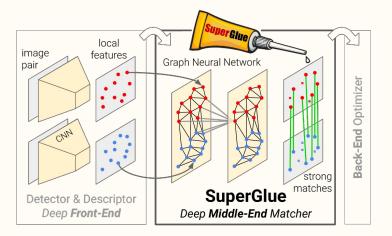


Image Feature Matching Preliminaries 8

Preliminaries

- Learning-based Approaches
 - Deep Learning & Neural Networks
 - Convolutional Neural Networks (CNNs)
 - Graph Neural Networks (GNNs)
- Matching with Heuristics
 - Nearest Neighbor
 - Ratio Test
 - Mutual Consistency Test
- Geometric Verification
 - Homography & Pose Estimation
 - Direct Linear Transform (DLT)
 - Essential & Fundamental Matrices
 - 5-point / 8-point Algorithms
 - Random Sample Consensus (RANSAC)
- Optimal Assignment Methods
 - Bipartite Matching
 - Hungarian Algorithm
 - Sinkhorn Iteration

Image Feature Matching Evaluation 9

Evaluation

Detector Metrics:

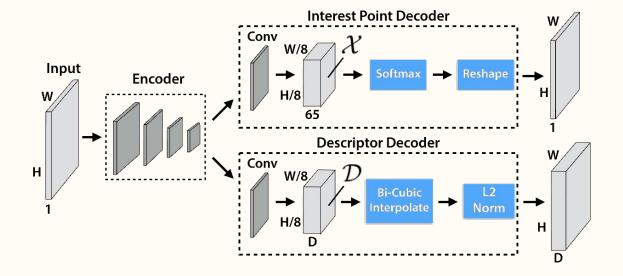
- Corner Detection Average Precision (AP) Measures how well detected points align with ground-truth corners (Precision–Recall AUC). Higher AP = better.
- Localization Error (LE) Average pixel distance between detected points and their closest ground-truth corner. Lower is better.
- Repeatability (Rep) Probability a point is re-detected in a second view of the same scene. Higher is better.
- Descriptor and Matching Metrics
 - Nearest Neighbor mAP Discriminativeness of descriptors via NN matching (Precision–Recall AUC).
 Higher = better descriptors.
 - Matching Score (MS) Fraction of ground-truth correspondences recovered by the pipeline.
 Combines detection + description.
 - Homography Estimation Accuracy Ability to recover the ground-truth homography by transforming image corners correctly.
 - Pose Estimation mAP Area under the curve of relative pose error.

SuperPoint

The art and craft of designing neural nets to replace SIFT.

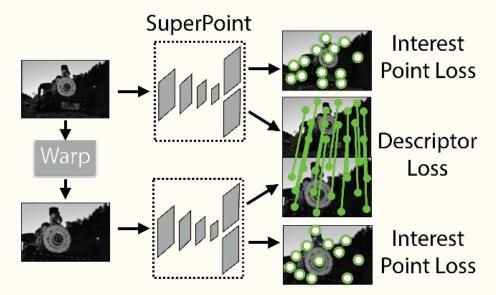
Model Architecture

- CNN architecture
 - VGG-like backbone
- Points + descriptors computed jointly, no patches
- No deconvolution layer



Model Training

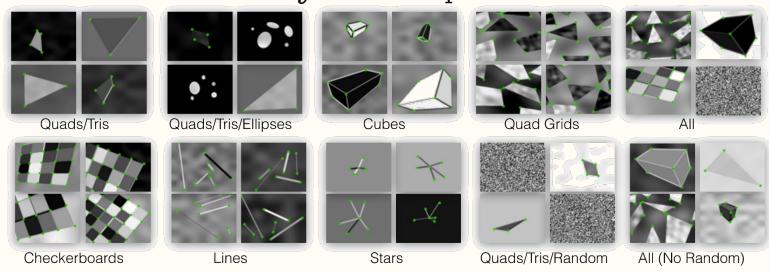
- Siamese training with pairs of images
- Descriptor trained via metric learning (contrastive loss)
- Keypoints trained via supervised keypoint labels
 - Where do these come from?



How to get Keypoint Labels?

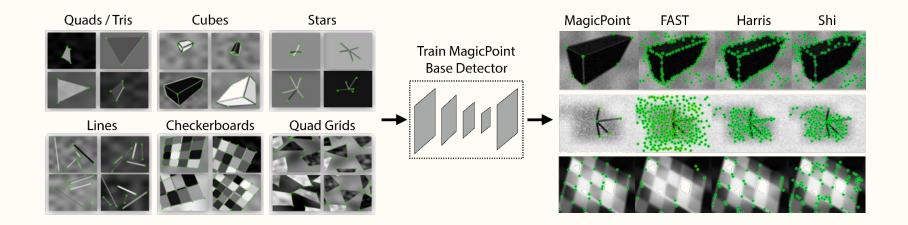
- Need large scale dataset of annotated images
- Too hard for humans to label

Synthetic Shapes



Self-Supervised Training

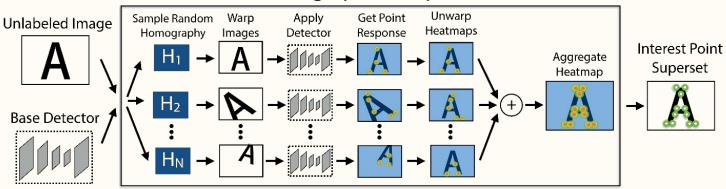
- Synthetic Training
 - Non-photorealistic shapes
 - Heavy noise
 - Effective and easy



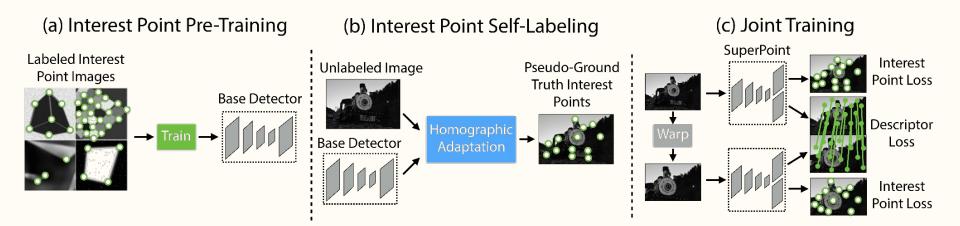
Self-Supervised Training

- Homographic Adaption
 - Use trained "MagicPoint" network
 - Simulate planar camera motion with homographies
 - Enhance repeatable points

Homographic Adaptation



Overview



Metrics

	57 Illumination Scenes		59 Viewpoint Scenes		
	NMS=4	NMS=8	NMS=4	NMS=8	
SuperPoint	.652	.631	.503	.484	
MagicPoint	.575	.507	.322	.260	
FAST	.575	.472	.503	.404	
Harris	.620	.533	.556	.461	
Shi	.606	.511	.552	.453	
Random	.101	.103	.100	.104	

Table 3. **HPatches Detector Repeatability**. SuperPoint is the most repeatable under illumination changes, competitive on viewpoint changes, and outperforms MagicPoint in all scenarios.

	Homog	graphy E	stimation	Detect	tor Metrics	Descripto	or Metrics
	$\epsilon = 1$	$\epsilon = 3$	$\epsilon = 5$	Rep.	MLE	NN mAP	M. Score
SuperPoint	.310	.684	.829	.581	1.158	.821	.470
LIFT	.284	.598	.717	.449	1.102	.664	.315
SIFT	.424	.676	.759	.495	0.833	.694	.313
ORB	.150	.395	.538	.641	1.157	.735	.266

Table 4. **HPatches Homography Estimation.** SuperPoint outperforms LIFT and ORB and performs comparably to SIFT using various ϵ thresholds of correctness. We also report related metrics which measure detector and descriptor performance individually.

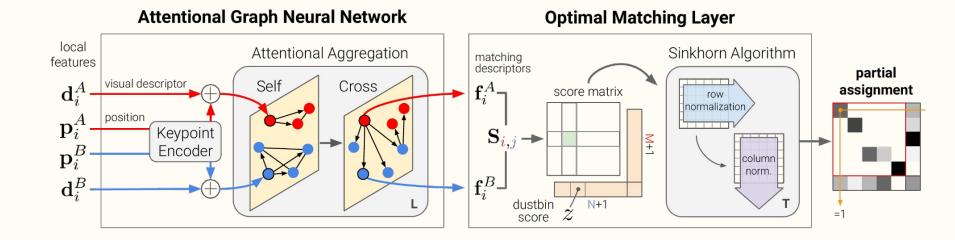
SuperGlue

Deep matching with SuperPoint: Can we learn to solve the correspondence problem?

Overview

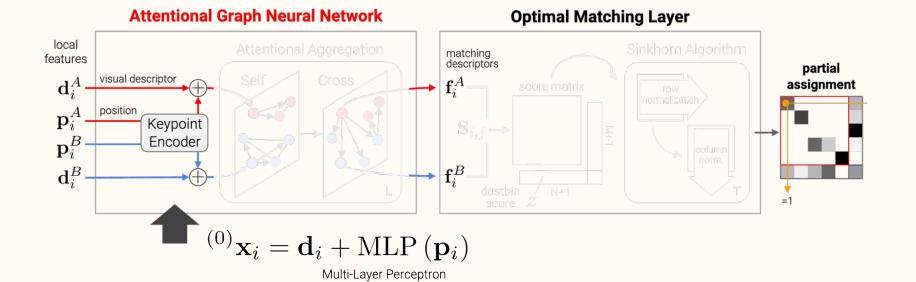
- Inputs
 - Images A and B
 - 2 sets of M, N local features (keypoints and descriptors)
- Outputs
 - Single a match per keypoint + occlusion using soft partial assignment
- Method
 - A Graph Neural Network (GNN) with attention
 - Encodes contextual cues & priors
 - Reasons about the 3D scene
 - Solving a optimal transport problem
 - Differentiable solver
 - Enforces the assignment constraints

Architecture



Attentional GNN

Initial representation for each keypoint



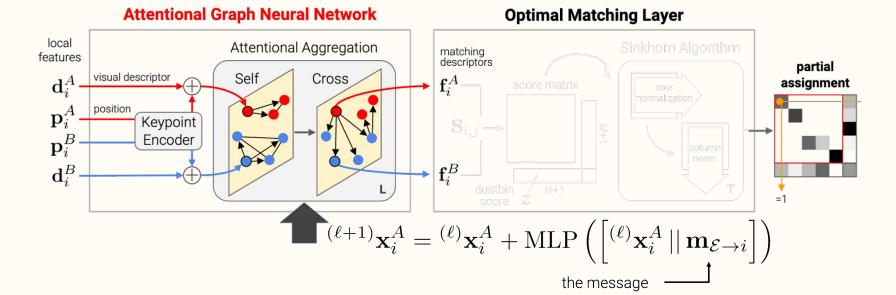
Attentional GNN

• Update the representation based on other keypoints - using a Message Passing Neural Network

a complete graph with two types of edges

o in the same image: "self" edges

o in the other image: "cross" edges



Attentional Aggregation

Compute the message using self and cross attention

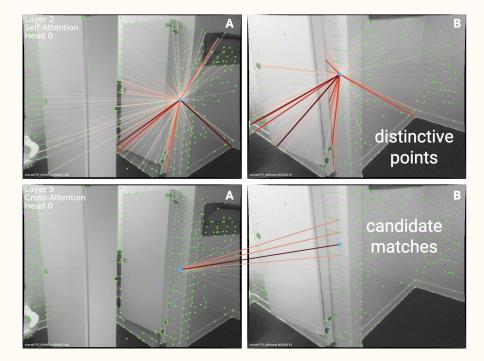
$$\mathbf{x}_{i}^{A} = {}^{(\ell)}\mathbf{x}_{i}^{A} + \mathrm{MLP}\left(\left[{}^{(\ell)}\mathbf{x}_{i}^{A} \mid\mid \mathbf{m}_{\mathcal{E}\rightarrow i}\right]\right)$$
the message

$$\mathbf{m}_{\mathcal{E} \to i} = \sum_{j:(i,j) \in \mathcal{E}} \alpha_{ij} \mathbf{v}_{j} \qquad \mathbf{q}_{i} = \mathbf{W}_{1}^{(\ell)} \mathbf{x}_{i} + \mathbf{b}_{1}$$

$$\alpha_{ij} = \operatorname{Softmax}_{j} (\mathbf{q}_{i}^{\mathsf{T}} \mathbf{k}_{j}) \qquad \begin{bmatrix} \mathbf{k}_{j} \\ \mathbf{v}_{j} \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{2} \\ \mathbf{W}_{3} \end{bmatrix}^{(\ell)} \mathbf{x}_{j} + \begin{bmatrix} \mathbf{b}_{2} \\ \mathbf{b}_{3} \end{bmatrix}$$

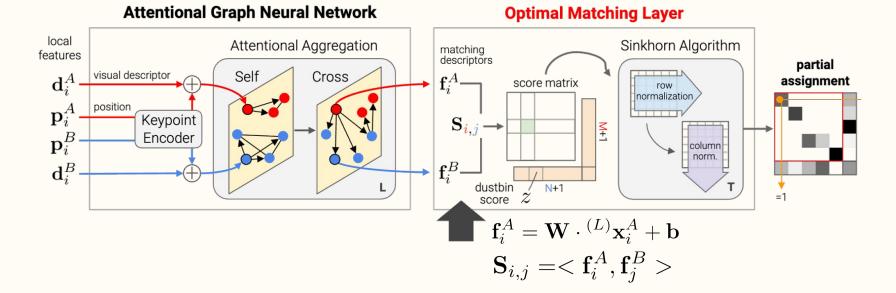
Attentional Aggregation

- Self-attention = intra-image information flow
- Cross attention = inter-image



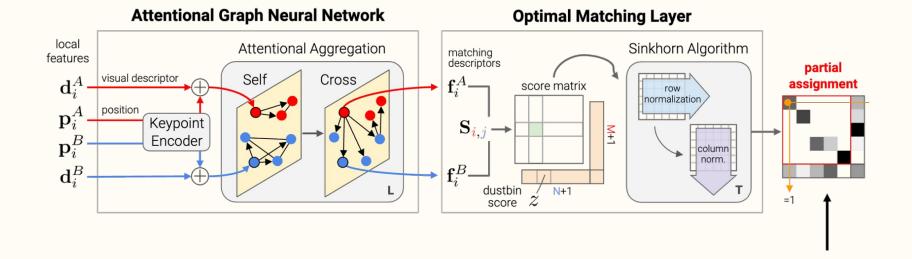
Optimal Matching Layer

- Compute score matrix
- Occlusion and noise: unmatched keypoints are assigned to a dustbin
- Compute the partial assignment matrix
 - With the Sinkhorn algorithm: differentiable & soft Hungarian algorithm

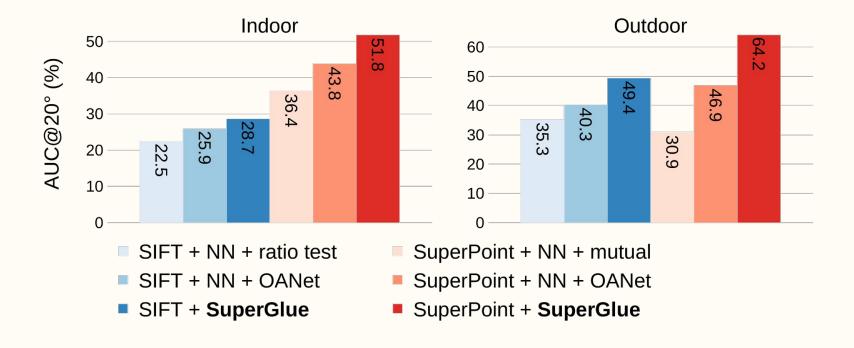


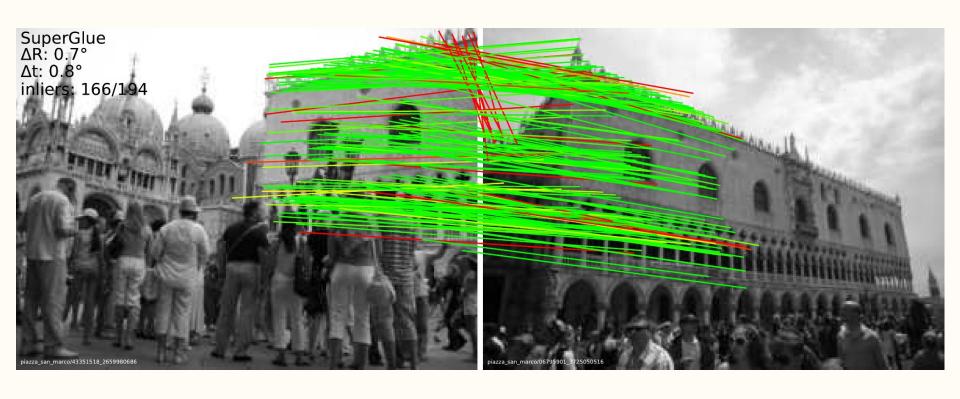
Loss

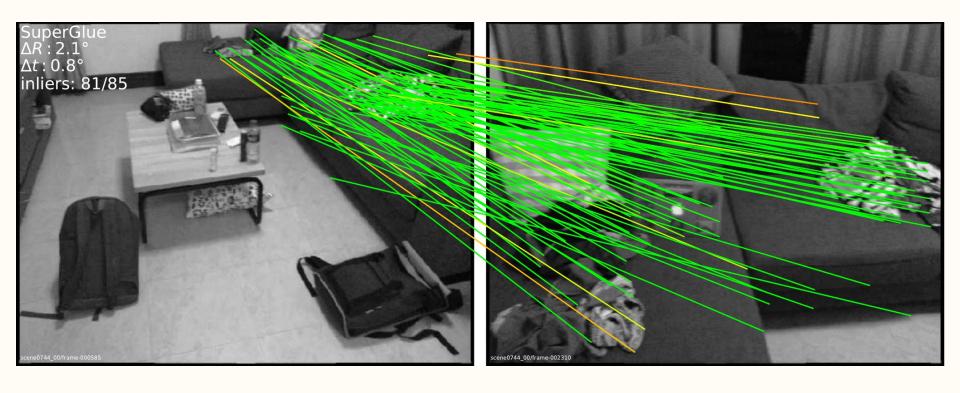
- Compute ground truth correspondences from pose and depth
- Find which keypoints should be unmatched
- Loss: maximize the log-likelihood of the GT cells in the partial assignment matrix

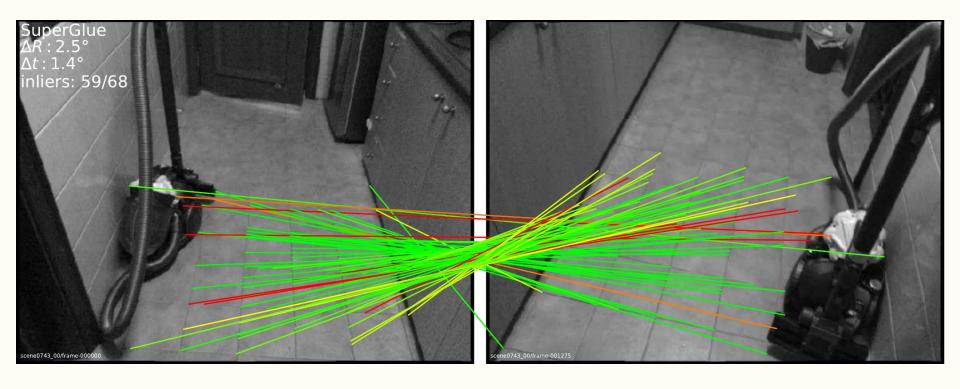


Metrics

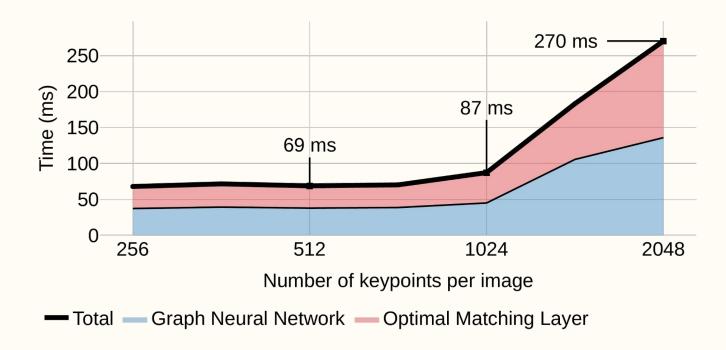








Run-time Analysis



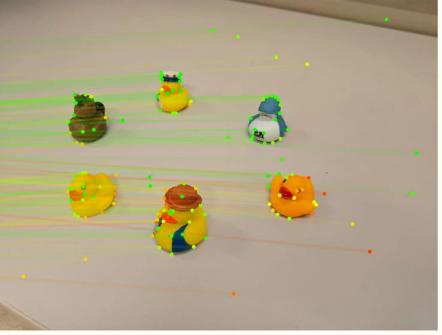
Duckie Dataset

Why should they have all the fun?

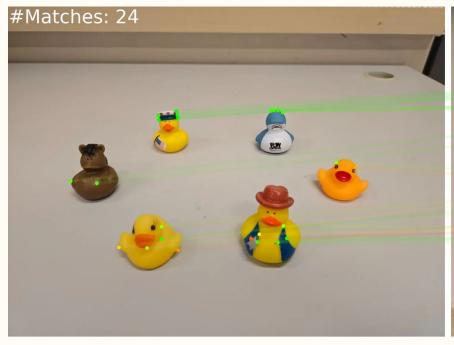
N = 1

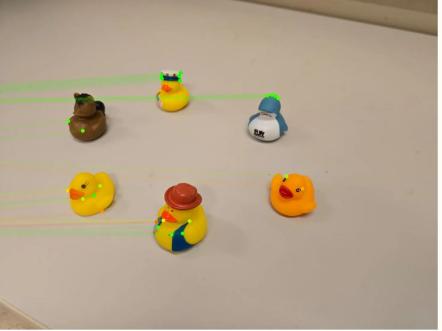
Duckie Dataset

Duckie Dataset



Duckie Dataset





Conclusions

- Problem: Robust feature detection & matching is critical for SLAM, SfM, and localization, but remains challenging under viewpoint, illumination, and texture changes.
- SuperPoint:
 - Learned detector + descriptor in a single CNN.
 - Self-supervised pretraining (synthetic homographies) enables real-world generalization.
- SuperGlue:
 - Learned matching with graph neural networks and optimal transport.
 - Context-aware, consistent correspondences outperform descriptor-only matching.
- Key lesson: Learning helps both where we detect features (SuperPoint) and how we match them (SuperGlue).

Other Relevant Work

- Earlier works
 - FAST Features from Accelerated Segment Test
 - LIFT Learned Invariant Feature Transform
- But can we learn generally useful image features?
 - DINO Self-Distillation with No Labels
- Did the community just accept this approach?
 - DeDoDe DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local Feature Matching
 - MatchFormer MatchFormer: Interleaving Attention in Transformers for Feature Matching
 - GlueStick GlueStick: Robust Image Matching by Sticking Points and Lines Together
- Need for speed
 - LightGlue Local Feature Matching at Light Speed
- Who needs detectors anyway?
 - LoFTR Detector-Free Local Feature Matching with Transformers
 - RoMA Robust Dense Feature Matching
- Scaling transformers for pointmap prediction
 - DUSt3R / MASt3R Geometric 3D Vision Made Easy
 - VGGT Visual Geometry Grounded Transformer

