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Acknowledgements

e This presentation uses material presented in the two papers:
o  SuperPoint: Self-Supervised Interest Point Detection and Description
o  SuperGlue: Learning Feature Matching with Graph Neural Networks
e This presentation also borrows from two presentations:
o  Deep Visual SLAM Frontends by Tomasz Malisiewicz at CVPR 2020
o  SuperGlue presentation by Paul-Edouard Sarlin at CVPR 2020
e Allimages used are from the above-mentioned material, unless noted otherwise.



Image Feature Matching Motivation

Motivation

Two parts of Visual SLAM
Front-end

Feature extraction (SIFT, SURF, ORB)
Data Association (feature tracking, loop closure)
Back-end
Optimize pose and 3D structure
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Source: C. Cadena, L. Carlone, et al. “Past, Present, and Future of Simultaneous Localization
And Mapping: Towards the Robust-Perception Age”
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Image Feature Matching Why is it so difficult?

Why is it so difficult?

Appearance changes: illumination, weather, sensor noise
Viewpoint changes: perspective distortion, scale, occlusion
Repetitive structures: many false matches (windows, tiles, trees)
Textureless regions: few or no features (white walls, roads)

Stop a 3
Runtime: 32.3m:s

Source: P. Lindenberger, P. Sarlin, et al. “LightGlue:
Local Feature Matching at Light Speed”
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Why is it so difficult?
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Source: J. Wang, N. Karaeyv, et al. “Visual Geometry Grounded Deep Structure From Motion”
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Research Questions

e SuperPoint
o How to learn detectors & descriptors?
o  Can we train without labeled correspondences (self-supervised)?
o How does it compare with earlier pipelines (e.g., LIFT, SIFT)?
e SuperGlue
o How to learn the data association between two images?
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Preliminaries

e Learning-based Approaches
o  Deep Learning & Neural Networks
o  Convolutional Neural Networks (CNNSs)
o  Graph Neural Networks (GNNSs)
e  Matching with Heuristics
o  Nearest Neighbor
o  Ratio Test
o  Mutual Consistency Test
e  Geometric Verification
o  Homography & Pose Estimation
o Direct Linear Transform (DLT)
o  Essential & Fundamental Matrices
o  5-point/ 8-point Algorithms
o Random Sample Consensus (RANSAC)
e  Optimal Assighment Methods
o  Bipartite Matching
o Hungarian Algorithm
o Sinkhorn Iteration
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Evaluation

e Detector Metrics:

o

Corner Detection Average Precision (AP) - Measures how well detected points align with ground-truth
corners (Precision-Recall AUC). Higher AP = better.

Localization Error (LE) - Average pixel distance between detected points and their closest
ground-truth corner. Lower is better.

Repeatability (Rep) - Probability a point is re-detected in a second view of the same scene. Higher is
better.

e Descriptor and Matching Metrics

o

Nearest Neighbor mAP - Discriminativeness of descriptors via NN matching (Precision-Recall AUC).
Higher = better descriptors.

Matching Score (MS) - Fraction of ground-truth correspondences recovered by the pipeline.
Combines detection + description.

Homography Estimation Accuracy - Ability to recover the ground-truth homography by transforming
image corners correctly.

Pose Estimation mAP - Area under the curve of relative pose error.
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SuperPoint

The art and craft of designing neural nets
to replace SIFT.
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Model Architecture

e CNN architecture

o  VGG-like backbone
e Points + descriptors computed jointly, no patches
e No deconvolution layer
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Model Training

e Siamese training with pairs of images
e Descriptor trained via metric learning (contrastive loss)
e Keypoints trained via supervised keypoint labels

o  Where do these come from?
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How to get Keypoint Labels?

e Need large scale dataset of annotated images
e Too hard for humans to label
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Self-Supervised Training

e Synthetic Training
o Non-photorealistic shapes
o Heavy noise
o Effective and easy
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oint

Self-Supervised Training

e Homographic Adaption
o Use trained “MagicPoint” network
o  Simulate planar camera motion with homographies
o Enhance repeatable points
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Overview

(a) Interest Point Pre-Training (b) Interest Point Self-Labeling (c) Joint Training
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Metrics

57 Nllumination Scenes 59 Viewpoint Scenes
NMS=4 NMS=8 NMS=4 NMS=8

SuperPoint  .652 631 .503 484
MagicPoint  .575 .507 322 .260
FAST 575 472 .503 404
Harris .620 533 556 461
Shi .606 S11 552 453
Random .101 .103 .100 .104

Table 3. HPatches Detector Repeatability. SuperPoint is the
most repeatable under illumination changes, competitive on view-
point changes, and outperforms MagicPoint in all scenarios.

Homography Estimation | Detector Metrics Descriptor Metrics

e=1e¢=3 e=5 |Rep. MLE NNmAP M. Score
SuperPoint 310 .684 829 |.581  1.158 821 470
LIFT 284 598 717 |.449  1.102 664 315
SIFT 424 676 759 |.495 0.833 694 313
ORB 150 395 538 |.641 1.157 735 266
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Table 4. HPatches Homography Estimation. SuperPoint out-
performs LIFT and ORB and performs comparably to SIFT using
various e thresholds of correctness. We also report related metrics

which measure detector and descriptor performance individually.
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SuperGlue

Deep matching with SuperPoint: Can we
learn to solve the correspondence
problem?
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Overview

e Inputs
o Images AandB
o 2setsof M, N local features (keypoints and descriptors)
e Outputs
o  Single a match per keypoint + occlusion using soft partial assignment
e Method
o A Graph Neural Network (GNN) with attention
m Encodes contextual cues & priors
m Reasons about the 3D scene
o  Solving a optimal transport problem
m Differentiable solver
m Enforces the assignment constraints

19
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Architecture

Attentional Graph Neural Network
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Attentional GNN

SuperGlue

e |Initial representation for each keypoint

Attentional Graph Neural Network
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Optimal Matching Layer
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Attentional GNN

e Update the representation based on other keypoints - using a Message Passing Neural Network
o acomplete graph with two types of edges
o inthe sameimage: “self" edges
o inthe otherimage: “cross" edges
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Attentional Aggregation

e Compute the message using self and cross attention

(EDxd = OxA L MLP <[(£)X%4 i mg_m-])
the message 41
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Attentional Aggregation

e Self-attention = intra-image information flow
e Cross attention = inter-image

distinctive
points

24
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SuperGlue

Optimal Matching Layer

e Compute score matrix

e Occlusion and noise : unmatched keypoints are assigned to a dustbin

e Compute the partial assignment matrix

o

local
features

With the Sinkhorn algorithm: differentiable & soft Hungarian algorithm
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Loss

SuperGlue

Compute ground truth correspondences from pose and depth

Find which keypoints should be unmatched
Loss: maximize the log-likelihood of the GT cells in the partial assignment matrix
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Metrics

AUC@20° (%)
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Qualitative Results

SuperGlue
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Qualitative Results
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Qualitative Results

scene0744_00/frame-002310
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Qualitative Results

S 0743_00/frame-001275
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Run-time Analysis
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Duckie Dataset

Why should they have all the fun?
NI
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Duckie Dataset

#EkeypelintsO4240
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Duckie Dataset

#Matches: 126
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Duckie Dataset

#Matches: 24
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Conclusions

e Problem: Robust feature detection & matching is critical for SLAM, SfM, and localization, but remains
challenging under viewpoint, illumination, and texture changes.
e  SuperPoint:
o Learned detector + descriptor in a single CNN.
o  Self-supervised pretraining (synthetic homographies) enables real-world generalization.
e SuperGlue:
o  Learned matching with graph neural networks and optimal transport.
o  Context-aware, consistent correspondences outperform descriptor-only matching.
e Key lesson: Learning helps both where we detect features (SuperPoint) and how we match them
(SuperGlue).
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Other Relevant Work

e Earlier works
o  FAST - Features from Accelerated Segment Test
o LIFT - Learned Invariant Feature Transform
e But can we learn generally useful image features?
o  DINO - Self-Distillation with No Labels
e Did the community just accept this approach?
o DeDoDe - DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local Feature Matching
o  MatchFormer - MatchFormer: Interleaving Attention in Transformers for Feature Matching
o  GlueStick - GlueStick: Robust Image Matching by Sticking Points and Lines Together
e Need for speed
o  LightGlue - Local Feature Matching at Light Speed
e Who needs detectors anyway?
o LOFTR - Detector-Free Local Feature Matching with Transformers
o RoMA - Robust Dense Feature Matching
e Scaling transformers for pointmap prediction
o DUSt3R/MASt3R - Geometric 3D Vision Made Easy
o  VGGT - Visual Geometry Grounded Transformer
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Conclusion
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Conclusion
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