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! Totoduction e Optical Flow Problem

5 Optical flow i the task of estimating per-pixel motion between video frames
Qe long standin vision problem that remains ancolved. The best systems .
are limited by difficulties including fast-moving objects, occlusions, motion blur,
et by il e Not to be confused with the
Optical flow has traditionally been approached as a hand-crafted optimiza-
tion problem over the space of dense displacement fields between a pair of im- . .
ages [21,51,13]. Generally, the optimization objective defines a trade-off between dl S trlb ute d C 0 n S e n S u S
a data term which encourages the alignment of visually similar image regions
and a regularization term which imposes priors on the plausibility of motion. .
Such an approach has achieved considerable success, but further progress has l h
appeared challenging, due to the dificutios n hand.designing an optimization a gOI‘lt m
objective that s robust to a variety of corner cascs.
Recently, deep learning has been shown as a promising alternative to tradi-
tional methods. Deep learning can side-step formulating an optimization prob-
lem and train a network to directly predict flow. Current deep learning meth-
ods [25,42,22,49,20] have achieved performance comparable to the best tradi-
tional methods while being significantly faster at inference time. A key question
for further research is designing effective architectures that perform better, train
more easily and generalize well to novel scencs.
We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep
network architecture for optical flow. RAFT enjoys the following strengths:
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What is Optical Flow?

Goal: Estimate motion field between two consecutive frames ie
get a velocity vector for every pixel
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Where is Optical Flow used?

e Sports Analytics: Motion Analysis for performance
improvement and injury prevention

e Computer Graphics: Stable Rendering and Scene
Reconstruction

e Robotics and Autonomous Driving: Obstacle motion and
collision detection
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Problem Statement

Definition

Given two frames I1 and 12, predict a flow field

F(x,y) = (u(x,y),v(x,y)), where (u, v) is the horizontal and
vertical displacement of pixel (x,y).

Side Notes:

e Feature Matching vs Optical Flow

e Sparse vs Dense Optical Flow Methods
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Problem Statement

Assumptions

e Brightness Constancy: Pixel intensity doesn’t change from
one frame to the next

I(x,y,t) = I(x+ dx,y + dy, t + dt)

e Spatial Smoothness: Neighboring pixel have the same motion

I(x+dxy+dyt+dt) =~ I(x,y.t)+ Lu+Lv+1
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Problem Statement

Optical Flow Constraint

Lu+ILv+I,=0

where:
; oI ; oI dx dy ; oI
T Yy dt at| |7 ot
Spatial Derivatives Optical Flow Temporal Derivative

The spatial and temporal derivatives I, I, and I; are known, so

the goal of the classical models is to solve for u and v (aperture
problem)
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Classical Methods (Early 1980s - Mid 2010s)

Horn-Schunk (1981)

Formulate optical flow as energy minimization problem solved
with iterative relaxation

E(u,v) = ” (L + Ly + L)*+ o (|| Vul|* + || Vv||*) dx dy

Brightness Constancy Smoothness Term

which can be solved with the Euler-Lagrange equations:

L(Lu+ILv+1I)+ «*Vu=o0
L(Lu+ILv+1I)+o*Vv=o0
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Classical Methods (Early 1980s - Mid 2010s)

Horn-Schunk (cont.)

The previous PDEs can be solved with iterative relaxation until
convergence

=k =k
Mﬂ:aL}Ahu+5v+m
o+ L2+12

=k =k
¢H:#_5@u+m+w)
o2+ I+ 12
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Classical Methods (Early 1980s - Mid 2010s)

Classical Methods Improvements

1. Feature Extraction
2. Pixel Similarity

3. Iterative Relaxation

Horn-Schunck (1981)

Anandan (1989) Kanade-Lucas-Tomasi (1991)
L4 i + i +
years
1980 1981 1985 1990 1995
Differential Methods Hierarchical Methods Correlation & Feature-based
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Classical Methods Challenges

e Accuracy: Large Displacement, Occlusions, Illumination &
appearance changes

e Slow: no training phase, iteration has to be made at inference
time
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Deep Learning Methods (Mid 2010s-Present)

FlowNet PWC-Net RAFT FlowFormer
i f l f f l f l
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
CNN Feasibility Upsampling Correlation Volume Transformer-based

e FlowNet (162M): Showed that supervised learning could
outperform classical methods, but heavy and struggled with
large displacement

e PWC-Net (8.8M): Introduce pyramid, warping and cost
volume ideas for upsampling (U-Net)

e RAFT (4.8M): All-pairs correlation volume

e FlowFormer (18.2M): Transformer-based model
14
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Recurrent All-Pairs Field Transfoms (RAFT)
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Recurrent All-Pairs Field Transfoms (RAFT)
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Input, Output and Flavors

e Input: HxW x 2C; C=3
e Output: HxWx2
Flavors:

e RAFT (4.8 M)

e RAFT-S (1M)

16




Architecture

Overview

Recurrent All-Pairs Field Transfoms (RAFT)

O®@00000000

Context Encoder

" 2. Correlation Layer
E =
(. M [ |
T
4D Correlation \nLu (’ !‘- L

1. Encoder Layer

Optical Flow
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Architecture

Novel Ideas

Recurrent All-Pairs Field Transfoms (RAFT)

O0@0000000

Limitations RAFT Improvements
Fine details lost due to UNet | Feature Encoder store and up-
architecture date a single flow field

Fixed number of iterations
during training and inference

GRU-based opdate operator
with shared weights

Large displacement missed
because correlation per-
formed locally

4D correlation volume

18
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Architecture

Encoder Layer

The encoder layer is made of:

e Feature Encoder gq: extract per-pixel feature from I1 and 12

e Context Encoder hg: extract edges feature from I1

Differences:
e Feature encoder uses
instance normalization

Conv7x7 (32)

N
3
5
5
]
)
@

Res. Unit (32)
Res. Unit (64)
Res. Unit (64)

Res. Unit (96)
Res. Unit(96)
(Conv3x3(128))|

e Context encoder uses batch
normalization
Why RAFT add additional

]RH><W><3 s ]RH/8><W/8><D context encoder?

Jo :
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Architecture

Correlation Layer

Compute pixel similarity about small and large displacement:

1. Correlation Pyramid: For each pixel in I1, compute its
similarity score to every pixel in I2 by taking the dot product
between all pairs of feature vectors (or with a single matrix
multiplication)

This forms a 4-Layer Pyramid C', C?, C?, C*, where C" has
dimension HxWxH /2*xW /2% and k is the kernel size

l] k de l]h ge( ) klh

mage 1 Image 2 CleHxWxHxW e HxW xh C' s HxW x Hibx Wit
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Architecture

Correlation Layer (cont.)

2. Correlation Lookup: A lookup operator Lc which maps each
pixel in I1 to its estimate correspondance in I2. Given the
current predicted flow f;(u), f,(v) and the pixel (x,y), compute
the tentative correspondance x” = (x + f;(x),y + f,(»)) and
look in its local neighborhood to find the actual
correspondance

N(x ), = {x + dx|||dx|, < r}
Why it's more efficient:
1. Precompute correlation volume

2. Local lookup

21
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Architecture
Update Layer

Instead of one-shot flow estimate like earlier model, RAFT uses
a recurrent update mechanism:

1. Initialization: Zero optical flow ie assume no motion

2. Inputs: concatenate correlation features + flow features +
context features into a single feature map

22
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Update Layer (cont.)

3. Update: ConvGRU Refine flow step by step by integration
correlation and context iteratively

z; = 0(Convyy;([hs—1, %], W,))  (Update gate)
r, = 0(Convyys([he—1, %], W,))  (Reset gate)
h, = tanh(Conv, w5 ([r; © hy_1, %], W)  (Candidate hidden state)

he=(1—2)®h 42z ®h (New hidden state)

4. Flow Prediction: Flow prediction is updated f** = f, + Af
and prediction are made at 1/8 resolution for image efficiency

23
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Update Layer (cont.)

5. Upsampling: Use a learn convex mask over 3x3 neighborhood
instead of bilinear upsampling

% B - [Je-[Je-[Jo
—, e-Je-[Je
7T1 -He-Te-l
§ {
Y 4 Y |
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RAFT Flavors

Differences

RAFT (4.8M) Differences:
e RAFT-S uses
I . bottleneck residual
L units and 3x3

convolution in GRU

Feature / Context Encoder Update Block (hidden dim 128)

e Full model uses
GRU updates blocks
with 1x5 and 5x1
filters to increase

e ot it e i a6 ) _ receptive field
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Evaluation

Datasets

e Hardware: 2x 2080Ti GPU

e Datasets:
o FlyingThings: Synthetic dataset with large displacement and
complex occlusions
o KITTI: Real driving scene images with sparse ground truth from
LiDAR. Involves rigid motion
o Sintel: Synthetic animated movie with non-rigid motion

we A PN

FlyingThings Example

Sintel Example

26
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Evaluation

Training

1. Pretrained on FlyingThings for 100K iterations
2. Trained on FlyingThings3D for 100K iterations

3. Fine-tuned on Sintel and KITTI for 100K iterations

Intuition:
e Use FlyingThings to learn priors because is diverse

e Evaluate using both synthetic dataset and real dataset

27
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Evaluation

Metrics

e Loss Function: L1 distance with exponentially increasing
weight

N
L= Yl —fllsy =08

e Optimizer: AdamW with gradient clip [—1, 1]
e Metric: End-Point-Error (EPE)

28
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Results

e Training Iterations
o Surpass PWC-Net after 6 updates
o Surpass FlowNet after 3 updates

e EPE on Sintel: 5.04 vs 8.36 (40% reduction)
e EPE on KITTI: 2.855 vs 4.098 (16% reduction)

e Inference Time: Doesn’'t beat PWC-Net (0.034s)
o RAFT-S:(0.043s)
o RAFT: (0.097s)

5 3

R}

verage end-point-error
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Perspective
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Limitations

Non-rigid motion and occlusions not handled well

Still requires O(MN) to compute correlation volume

Large displacement bottlenecked by higher pyramid-level

Model is still large
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Future Directions

e SEA-RAFT: reduce runtime, faster convergence, better
generalization

e FlowFormer: uses transformers to improve upon
non-repetitive larger displacement and non-rigid motion

e \ours: occlusion mask with forward-backward consistency
check

e GMFlow: reduce dependence on many iterations

32
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Questions?
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