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• Camera Image à Depth Estimation

Motivation | Common Robot Perception Tasks 



Motivation | What is Predictive Uncertainty
• Predictive uncertainty is a mathematical tool to help us quantify the 

trustworthiness of predictions generated by a robot perception model.

• Uncertainty à Naturally modeled using Probability Theory*. 

• Example:

High Uncertainty Low Uncertainty



• Example: Sensor Fusion

• Robots use many sensors to perform 
similar perception functions.

• Multiple sensors can provide 
inconsistent information.

• Uncertainty allows us to fuse multiple 
sources of information or to determine 
which one is more trustworthy!

Motivation | Importance of Predictive Uncertainty



• Example: Active Learning

• Robot continuously collects data + 
predictions.

• What data should we label to improve 
robot performance?

• Annotation budget is not infinite!

• Uncertainty allows us to query the 
most “challenging” frames.

Motivation | Importance of Predictive Uncertainty

Labeled Data Unlabeled Data

Retrain Query

Highest Uncertainty 
Unlabeled Data



• Example: Robot Decision Making

• Theory: Every admissible decision 
rule is a (generalized) Bayes rule.

• Practice: When uncertainty increases, 
a system can change how it makes 
decisions to guarantee safe operation.

Motivation | Importance of Predictive Uncertainty



We must avoid false confidence bred from 
an ignorance of the probabilistic nature of 
the world, from a desire to see black and 
white where we should rightly see gray.

Motivation | Uncertainty to Quantify Knowledge



• Autopilot sends Tesla Model 3 to 
truck.

• A Tesla on cruise control smashed 
into a tractor trailer in New Jersey, 
ripping off half its roof.

Motivation | Uncertainty and Decision Rules

https://newsabc.net/autopilot-sends-tesla-model-3-to-truck/
https://www.businessinsider.com/tesla-using-cruise-control-crashed-tractor-trailer-new-jersey-
2021-3



Motivation | Summary
• Uncertainty is essential for many operations commonly performed by robot 

software such as fusion, decision making, etc.

• Questions?

• Next: Some background.
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Background | Machine Learning
• Given a Dataset

• and an unknown data generating function

• we train a ML model with parameters      to estimate

• by minimizing a loss function



• Classification:

Background | Machine Learning
• Regression:



• Regression:
• Depth Estimation

• Object Localization

• Classification:
• Semantic Segmentation

• Occupancy Grid Mapping

Background | Common Robot Perception Tasks 



Background | Sources of Uncertainty In Machine Learning
• Given two bins each containing 20 tokens:

• You want to choose 5 tokens from the two bins. 
• You want to maximize your profit. 
• How will you choose these tokens? What is the source of your uncertainty? 

• If you are allowed to observe one token from bin 1, would that change how you 
make your decision?

20 Tokens: 
Half worth $10,
Half worth $0

20 Tokens: 
All worth $6



• Aleatoric Uncertainty:
• Results from the Stochasticity of the data generating process.
• Cannot be reduced by collecting more data.

• Example:

Background | Sources of Uncertainty In Machine Learning



Background | Sources of Uncertainty In Machine Learning
• Given two bins each containing 20 tokens:

• You want to choose 5 tokens from the two bins. 
• You want to maximize your profit. 
• How will you choose these tokens? What is the source of your uncertainty? 

• If you are allowed to observe one token from bin 1, would that change how you 
make your decision?

20 Tokens: 
All worth $10 

OR 
All worth $0

20 Tokens: 
All worth $6



• Epistemic Uncertainty:
• Results from the ignorance of the best model parameters.
• Can be reduced by collecting more data.

• Example:

Background | Sources of Uncertainty In Machine Learning



Predictive Uncertainty: Estimation



• Given a Dataset

• and an unknown data generating function

• we train a machine learning model with parameters      to estimate

• by minimizing a loss function

• Given a Dataset

• and an unknown data generating conditional distribution

• we train a machine learning model with parameters      to estimate

• by minimizing a loss function

Background | Estimating Aleatoric Uncertainty



Background | Classification Predictive Distributions



Estimation | Classification Predictive Distributions

• Softmax:

Neural Network

Softm
ax



Background | Regression Predictive Distributions



Estimation | Regression Predictive Distributions

Neural Network

variance
M

ean



Estimation | Regression Predictive Distributions
• needs to be positive semidefinite.

• Two main solutions in literature:
1. Assume uncorrelated components.

2. Estimate Cholesky decomposition                 such that:   



Estimation | Summary (Aleatoric Uncertainty)
• Aleatoric Uncertainty:

• Classification à Softmax probabilities.

• Regression à Variance estimation.



Estimation | Adding Epistemic Uncertainty
• Epistemic uncertainty à Lack of knowledge on which model generated that data.

• True Predictive distribution:

Prior



Estimation | Adding Epistemic Uncertainty
• Marginalizing over the parameters:

• Solution 1: Variational Inference à Ensemble based solutions

• Solution 2: MCMC sampling à Generative based solutions.
• Too computationally expensive for reasonable robot performance bounds.



Estimation | Ensembles
• Approximate Variational Inference:



Estimation | Ensembles
• Train T independent ensemble models by:

1. Randomly shuffling the order of training data observed by each model.
2. Randomly initializing model parameters (we already do that!).

• Inference: Neural Network 1

Neural Network T

Neural Network 2



Estimation | Ensembles
• Classification: Easy

• Regression: Assume each one of the T probability distribution a member of a 
uniformly weighted mixture of gaussians model.



Estimation | Ensembles
• Pros:

• Extremely trivial to implement.
• “Good enough” estimates that can be used for many application.

• Cons:
• O(n) runtime and memory.
• Some applications are shown to not benefit from ensembles (Object detection for 

example).



Estimation | Monte-Carlo Dropout
• Train a single model with dropout enabled.

• Run the network T times with the same input during inference while keeping 
dropout enabled.

Neural Network with 
Dropout

T Runs



Estimation | Monte-Carlo Dropout
• Pros:

• Extremely trivial to implement.
• Approximation of exponentially many ensembles with O(1) memory! 

• Cons:
• O(n) runtime.
• Worse than ensembles on uncertainty estimation task.
• Most of the time, results in worse prediction accuracy when compared to 

deterministic networks.



Summary | Epistemic Uncertainty
• Usually too computationally expensive for deployment on robots.

• If needed, use ensembles.
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Evaluation | Quality of Predictive Distributions
• Meaningful predictive probability distributions:

• Low uncertainty (high confidence), when the predictor makes small/no mistakes.
• High uncertainty (low confidence), when the predictor makes large mistakes.

• Overconfident incorrect predictions can lead to non-optimal decision making in 
planning tasks.

• Underconfident correct predictions can lead to under-utilizing information in 
fusion operations.



Evaluation | Quality of Predictive Distributions

41

• The goal of probabilistic forecasting is to maximize the sharpness of the 
predictive distributions subject to calibration. [1]

• Sharpness: the concentration of the predictive distribution.
• Example: Univariate Gaussians

• Calibration: the statistical consistency between the predictive distributions and 
the ground truth data.
• Example: 100 objects to be cars with 0.7 probability à 70 should truly be cars.

[1] Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E. Raftery. "Probabilistic forecasts, calibration and sharpness." Journal of the Royal Statistical Society: Series B (Statistical 
Methodology) 69, no. 2 (2007): 243-268.



Evaluation | Quality of Predictive Distributions
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• Given:

• Scoring Rule                                          .

• A scoring rule is proper if its minimum value is achieved only if

• Proper scoring rules:
• Measure both calibration and sharpness of a predictive distribution.
• Useful as a minimization objective for training, as well as an evaluation metric!



Evaluation | Common Proper Scoring Rules
• Negative log likelihood:

• Classification:

• Regression:

• NLL can suffer from many issues when used for training and evaluation.
• Brier score, continuous ranked probability score (CPRS), or the Energy score as 

alternatives. 



Evaluation | Summary
• Evaluation à Proper scoring rules.

• NLL is the most common proper score used to train predictive distribution 
estimators.

• Other metrics exists such as Calibration errors and Uncertainty Errors. Those 
are not proper so be careful if you use them.
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Conclusion | Steering Angle Prediction



Conclusion | Object Detection



Conclusion | Challenges and Outlook
• Questionable decomposition of epistemic/aleatoric uncertainty.

• Variance networks have been shown to be able to estimate epistemic uncertainty 
when used on their own.

• Dropout has been shown to be able to “kind of” capture aleatoric uncertainty.

• Scalability of epistemic uncertainty algorithms is currently a substantial bottle 
neck for usage in robotics.

• Can we get ground truth uncertainty from simulators / multiple human labels?



Conclusion | Resources
• Three papers to read à 70% of information required to begin using uncertainty 

estimation.

1. Eyke Hüllermeier and Willem Waegeman. "Aleatoric and epistemic 
uncertainty in machine learning: An introduction to concepts and 
methods." Machine Learning 110.3 (2021): 457-506.

2. Alex Kendall and Yarin Gal. "What uncertainties do we need in bayesian deep 
learning for computer vision?." (NeurIPS 2017).

3. Tilmann Gneiting and Adrian E. Raftery. "Strictly proper scoring rules, 
prediction, and estimation." Journal of the American statistical 
Association 102.477 (2007): 359-378.


