Adventures in Kalman Filtering — The "Prediction - Correction" World —

Prof. James Richard Forbes

McGill University, Department of Mechanical Engineering

October 25, 2021

- Sensors rarely measure states of interest directly. How do we "back out" states that are not measured directly?
 - Within an IMU there is a rate gyro, an accelerometer, and often a magnetometer.
 - ► The rate gyro measures $\underline{\omega}^{ba}$ (resolved in what frame?), *not* a set of Euler angles θ^{ba} , not a quaternion \mathbf{q}^{ba} , nor a DCM \mathbf{C}_{ba} , and *not* a set of Euler-angle rates $\dot{\theta}^{ba}$, not a quaternion rate $\dot{\mathbf{q}}^{ba}$, nor a DCM rate $\dot{\mathbf{C}}_{ba}$.¹
 - ► The accelerometer measures \underline{a} (resolved in what frame?), not \underline{v} , and not \underline{r} .
 - A magnetometer measures \underline{m} (resolved in what frame?), not θ^{ba} .
 - There's no such thing as an " $\stackrel{\frown}{a}$ ttitude sensor".
- Sensor data is imperfect; noise corrupts all measurements, and some measurements are (significantly) biased.
- Because noise and bias are random, we rely on concepts from probability theory to describe the properties of noise and bias that we are interested in *filtering*.

 $^{{}^{1} \}underline{\omega} {}^{ba}$ is the angular velocity of frame *b* relative to frame *a*. A rate gyro measures $\underline{\omega} {}^{ba}$ (resolved in what frame?), and not a set of Euler angles, nor a set of Euler angle rates, nor a quaternion, nor a quaternion rate.

The Gaussian Distribution

A continuous random variable is said to have a *normal* or *Gaussian* distribution if the pdf associated with the random variable x is given by

$$p(x;\bar{x},\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\bar{x})^2}{2\sigma^2}\right).$$

• $p(x; \bar{x}, \sigma^2)$ being a pdf means that

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\bar{x})^2}{2\sigma^2}\right) \mathrm{d}x = 1,$$

where the mean is

$$\bar{x} = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\bar{x})^2}{2\sigma^2}\right) \mathrm{d}x,$$

and the variance is

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \bar{x})^2 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \bar{x})^2}{2\sigma^2}\right) \mathrm{d}x.$$

Figure: Gaussian pdfs where $\bar{x} = 2$ and σ takes on values of 1/3, 2/3, and 1.

Shown in Figure 1 are three normal distributions. The mean of each is distribution is $\bar{x} = 2$, while the standard deviation of each are 1/3, 2/3, and 1, respectively.

A short-hand notation for indicating x is normally distributed is $x \sim \mathcal{N}(\bar{x}, \sigma^2)$.

The Multidimensional Case

In the N-dimensional case, a continuous random column matrix x ∈ ℝ^N is said to have a normal or Gaussian distribution if the pdf associated with x is given by

$$p(\mathbf{x}; \bar{\mathbf{x}}, \mathbf{Q}) = \frac{1}{\sqrt{(2\pi)^N \det \mathbf{Q}}} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \bar{\mathbf{x}}\right)^\mathsf{T} \mathbf{Q}^{-1} \left(\mathbf{x} - \bar{\mathbf{x}}\right)\right),$$

where $\bar{\mathbf{x}}$ is the mean and \mathbf{Q} is the covariance matrix.

- The covariance matrix is symmetric and positive definite (thus ensuring Q is not singular, and thus Q⁻¹ exists).
- Being a pdf, it can be shown that

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{(2\pi)^N \det \mathbf{Q}}} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \bar{\mathbf{x}}\right)^{\mathsf{T}} \mathbf{Q}^{-1} \left(\mathbf{x} - \bar{\mathbf{x}}\right)\right) d\mathbf{x} = 1,$$

the mean is

$$\bar{\mathbf{x}} = \int_{-\infty}^{\infty} \mathbf{x} \frac{1}{\sqrt{(2\pi)^N \det \mathbf{Q}}} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \bar{\mathbf{x}}\right)^{\mathsf{T}} \mathbf{Q}^{-1} \left(\mathbf{x} - \bar{\mathbf{x}}\right)\right) d\mathbf{x},$$

and the covariance is

$$\mathbf{Q} = \int_{-\infty}^{\infty} (\mathbf{x} - \bar{\mathbf{x}}) (\mathbf{x} - \bar{\mathbf{x}})^{\mathsf{T}} \frac{1}{\sqrt{(2\pi)^{N} \det \mathbf{Q}}} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \bar{\mathbf{x}}\right)^{\mathsf{T}} \mathbf{Q}^{-1} \left(\mathbf{x} - \bar{\mathbf{x}}\right)\right) d\mathbf{x}.$$

A short-hand notation for indicating x is normally distributed is $x \sim \mathcal{N}(\bar{x}, Q)$.

The Static Case

Consider

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{xy}^{\mathsf{T}} & \boldsymbol{\Sigma}_{yy} \end{bmatrix} \right).$$
(1)

Consider the affine estimator

$$\hat{\mathbf{x}} = \mathbf{K}\mathbf{y} + \boldsymbol{\ell},$$

where $\hat{\boldsymbol{x}}$ is the estimate of the state \boldsymbol{x} given the measurement $\boldsymbol{y}.$

- ► What form should K and ℓ take?
- How can a priori information, such as that given in (1), be used to generate the estimated state x?
- Define the error $\mathbf{e} = \mathbf{x} \hat{\mathbf{x}}$.

An **unbiased** estimate is desired, meaning $E[\mathbf{e}] = \mathbf{0}$.

Using this definition,

$$\mathbf{0} = E\left[\mathbf{x} - \hat{\mathbf{x}}\right] = E\left[\mathbf{x} - \mathbf{K}\mathbf{y} - \boldsymbol{\ell}\right] = E\left[\mathbf{x}\right] - E\left[\mathbf{K}\mathbf{y}\right] - \boldsymbol{\ell} = \boldsymbol{\mu}_x - \mathbf{K}\boldsymbol{\mu}_y - \boldsymbol{\ell},$$

$$\boldsymbol{\ell} = \boldsymbol{\mu}_x - \mathbf{K}\boldsymbol{\mu}_y.$$

Thus, an unbiased estimator is of the form

$$\hat{\mathbf{x}} = \mathbf{K}\mathbf{y} + \boldsymbol{\ell}$$

= $\mathbf{K}\mathbf{y} + \boldsymbol{\mu}_x - \mathbf{K}\boldsymbol{\mu}_y$
= $\boldsymbol{\mu}_x + \mathbf{K}(\mathbf{y} - \boldsymbol{\mu}_y)$

How should we pick K to provide a best estimate?

Consider

$$\begin{aligned} \mathbf{P} &= E\left[\mathbf{e}\mathbf{e}^{\mathsf{T}}\right] \\ &= E\left[(\mathbf{x} - \hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}})^{\mathsf{T}}\right] \\ &= E\left[(\mathbf{x} - \boldsymbol{\mu}_{x} - \mathbf{K}(\mathbf{y} - \boldsymbol{\mu}_{y}))(\mathbf{x} - \boldsymbol{\mu}_{x} - \mathbf{K}(\mathbf{y} - \boldsymbol{\mu}_{y}))^{\mathsf{T}}\right] \\ &= E\left[(\mathbf{x} - \boldsymbol{\mu}_{x})(\mathbf{x} - \boldsymbol{\mu}_{x})^{\mathsf{T}}\right] - E\left[(\mathbf{x} - \boldsymbol{\mu}_{x})(\mathbf{y} - \boldsymbol{\mu}_{y})^{\mathsf{T}}\right]\mathbf{K}^{\mathsf{T}} \\ &- \mathbf{K}E\left[(\mathbf{y} - \boldsymbol{\mu}_{y})(\mathbf{x} - \boldsymbol{\mu}_{x})\right] + \mathbf{K}E\left[(\mathbf{y} - \boldsymbol{\mu}_{y})(\mathbf{y} - \boldsymbol{\mu}_{y})^{\mathsf{T}}\right]\mathbf{K}^{\mathsf{T}} \\ &= \mathbf{\Sigma}_{xx} - \mathbf{\Sigma}_{xy}\mathbf{K}^{\mathsf{T}} - \mathbf{K}\mathbf{\Sigma}_{xy}^{\mathsf{T}} + \mathbf{K}\mathbf{\Sigma}_{yy}\mathbf{K}^{\mathsf{T}} \end{aligned}$$

▶ Recall that $tr(\mathbf{A}) = tr(\mathbf{A}^{\mathsf{T}})$, $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$ and that $tr(\mathbf{CD}) = tr(\mathbf{DC})$ for all $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$, $\mathbf{C} \in \mathbb{R}^{n \times m}$, $\mathbf{D} \in \mathbb{R}^{m \times n}$.

• Write $J(\mathbf{K}) = tr(\mathbf{P})$ as

$$J(\mathbf{K}) = \operatorname{tr}(\boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xy}\mathbf{K}^{\mathsf{T}} - \mathbf{K}\boldsymbol{\Sigma}_{xy}^{\mathsf{T}} + \mathbf{K}\boldsymbol{\Sigma}_{yy}\mathbf{K}^{\mathsf{T}})$$

= $\operatorname{tr}(\boldsymbol{\Sigma}_{xx}) - \operatorname{tr}(\boldsymbol{\Sigma}_{xy}\mathbf{K}^{\mathsf{T}}) - \operatorname{tr}(\mathbf{K}\boldsymbol{\Sigma}_{xy}^{\mathsf{T}}) + \operatorname{tr}(\mathbf{K}\boldsymbol{\Sigma}_{yy}\mathbf{K}^{\mathsf{T}})$
= $\operatorname{tr}(\boldsymbol{\Sigma}_{xx}) - 2\operatorname{tr}(\boldsymbol{\Sigma}_{xy}\mathbf{K}^{\mathsf{T}}) + \operatorname{tr}(\mathbf{K}\boldsymbol{\Sigma}_{yy}\mathbf{K}^{\mathsf{T}})$

▶ Consider a Taylor series expansion of a general function $f(\cdot) : \mathbb{R}^n \to \mathbb{R}$, that is

$$f(\bar{\mathbf{x}} + \delta \mathbf{x}) = f(\bar{\mathbf{x}}) + \left[\left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \bar{\mathbf{x}}} \right] \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^{\mathsf{T}} \left[\left. \frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}^{\mathsf{T}} \right) \right|_{\mathbf{x} = \bar{\mathbf{x}}} \right] \delta \mathbf{x} + \mathsf{H.O.T.}$$

where "H.O.T." means "higher-order terms", and

$$\left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \bar{\mathbf{x}}}, \qquad \left. \frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}^{\mathsf{T}} \right) \right|_{\mathbf{x} = \bar{\mathbf{x}}}$$

are the Jacobain and Hessian of $f(\cdot)$ evaluated at $\mathbf{x} = \bar{\mathbf{x}}$, respectfully.

A necessary condition for x̄ to be an extremum (either a maximum or a minimum) is

$$\left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}=\bar{\mathbf{x}}} = \mathbf{0}.$$

• When $\mathbf{H} > 0$ then $\bar{\mathbf{x}}$ corresponds to a minimum.

► Consider
$$\mathbf{K} = \bar{\mathbf{K}} + \delta \mathbf{K}$$
 and a Taylor series expansion of $J(\cdot)$. To this end,

$$J(\bar{\mathbf{K}} + \delta \mathbf{K}) = \operatorname{tr}(\boldsymbol{\Sigma}_{xx}) - 2\operatorname{tr}(\boldsymbol{\Sigma}_{xy}(\bar{\mathbf{K}} + \delta \mathbf{K})^{\mathsf{T}}) + \operatorname{tr}((\bar{\mathbf{K}} + \delta \mathbf{K})\boldsymbol{\Sigma}_{yy}(\bar{\mathbf{K}} + \delta \mathbf{K})^{\mathsf{T}})$$

$$= \operatorname{tr}(\boldsymbol{\Sigma}_{xx}) - 2\operatorname{tr}(\boldsymbol{\Sigma}_{xy}\bar{\mathbf{K}}^{\mathsf{T}}) - 2\operatorname{tr}(\boldsymbol{\Sigma}_{xy}\delta \mathbf{K}^{\mathsf{T}})$$

$$+ \operatorname{tr}(\bar{\mathbf{K}}\boldsymbol{\Sigma}_{yy}\bar{\mathbf{K}}^{\mathsf{T}}) + \operatorname{tr}(\bar{\mathbf{K}}\boldsymbol{\Sigma}_{yy}\delta \mathbf{K}^{\mathsf{T}}) + \operatorname{tr}(\delta \mathbf{K}\boldsymbol{\Sigma}_{yy}\delta \mathbf{K}^{\mathsf{T}})$$

$$= \underbrace{\operatorname{tr}(\boldsymbol{\Sigma}_{xx}) - 2\operatorname{tr}(\boldsymbol{\Sigma}_{xy}\bar{\mathbf{K}}^{\mathsf{T}}) + \operatorname{tr}(\bar{\mathbf{K}}\boldsymbol{\Sigma}_{yy}\delta \mathbf{K}^{\mathsf{T}}) + \operatorname{tr}(\delta \mathbf{K}\boldsymbol{\Sigma}_{yy}\delta \mathbf{K}^{\mathsf{T}})}{J(\bar{\mathbf{K}})}$$

$$- 2\operatorname{tr}(\boldsymbol{\Sigma}_{xy}\delta \mathbf{K}^{\mathsf{T}}) + 2\operatorname{tr}(\bar{\mathbf{K}}\boldsymbol{\Sigma}_{yy}\delta \mathbf{K}^{\mathsf{T}}) + \operatorname{tr}(\delta \mathbf{K}\boldsymbol{\Sigma}_{yy}\delta \mathbf{K}^{\mathsf{T}})$$

$$= J(\bar{\mathbf{K}}) - 2\operatorname{tr}(\boldsymbol{\Sigma}_{xy}\delta \mathbf{K}^{\mathsf{T}} - \bar{\mathbf{K}}\boldsymbol{\Sigma}_{yy}\delta \mathbf{K}^{\mathsf{T}}) + \operatorname{tr}(\delta \mathbf{K}\boldsymbol{\Sigma}_{yy}\delta \mathbf{K}^{\mathsf{T}})$$

Thus,

$$\frac{\partial J(\mathbf{K})}{\partial \mathbf{K}}\Big|_{\mathbf{K}=\bar{\mathbf{K}}} = \boldsymbol{\Sigma}_{xy} - \bar{\mathbf{K}}\boldsymbol{\Sigma}_{yy}, \qquad \frac{\partial}{\partial \mathbf{K}} \left(\frac{\partial J(\mathbf{K})}{\partial \mathbf{K}}^{\mathsf{T}}\right)\Big|_{\mathbf{K}=\bar{\mathbf{K}}} = \boldsymbol{\Sigma}_{yy}$$

Note, from the above derivation it follows that

$$\frac{\partial \mathrm{tr}(\mathbf{A}\mathbf{X}^{\mathsf{T}})}{\partial \mathbf{X}} = \mathbf{A}, \qquad \frac{\partial \mathrm{tr}(\mathbf{X}\mathbf{A}\mathbf{X}^{\mathsf{T}})}{\partial \mathbf{X}} = 2\mathbf{X}\mathbf{A}.$$

Don't memorize the above derivative definitions ... understand the fundamentals, the bigger picture ... that being, perturbing the independent variable, a Taylor series expansion, etc.

For $\overline{\mathbf{K}}$ to be an extremum,

$$egin{aligned} & \left. rac{\partial J(\mathbf{K})}{\partial \mathbf{K}}
ight|_{\mathbf{K}=ar{\mathbf{K}}} = \mathbf{0}, \ & \mathbf{\Sigma}_{xy} - ar{\mathbf{K}} \mathbf{\Sigma}_{yy} = \mathbf{0}, \ & ar{\mathbf{K}} \mathbf{\Sigma}_{yy} = \mathbf{\Sigma}_{xy}, \ & ar{\mathbf{K}} = \mathbf{\Sigma}_{xy} \mathbf{\Sigma}_{yy}^{-1} \end{aligned}$$

- The Hessian is $\Sigma_{yy} > 0$. Thus, $\bar{\mathbf{K}} = \Sigma_{xy} \Sigma_{yy}^{-1}$ corresponds to a minimum of $J(\mathbf{K}) = \operatorname{tr}(\mathbf{P})$.
- ► In fact, because J(·) is convex, this minimum is a global minimum, and thus an unique minimum.

Thus,

$$\begin{split} \hat{\mathbf{x}} &= \boldsymbol{\mu}_x + \bar{\mathbf{K}}(\mathbf{y} - \boldsymbol{\mu}_y) \\ &= \boldsymbol{\mu}_x + \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{yy}^{-1} (\mathbf{y} - \boldsymbol{\mu}_y) \end{split}$$

provides a best, unbiased, estimate of x given the measurement (or realization) y and the *a priori* information given in (1).

• Often we drop the "bar" and just write $\mathbf{K} = \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{yy}^{-1}$.

The Dynamic Case

 Consider a discrete-time system described by linear process (a.k.a. motion) and measurement (a.k.a. observation) models,

$$\begin{split} \mathbf{x}_k &= \mathbf{F}_{k-1} \mathbf{x}_{k-1} + \mathbf{G}_{k-1} \mathbf{u}_{k-1} + \mathbf{L}_{k-1} \mathbf{w}_{k-1}, \qquad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_k), \\ \mathbf{y}_k &= \mathbf{H}_k \mathbf{x}_k + \mathbf{M}_k \mathbf{v}_k, \qquad \qquad \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k). \end{split}$$

- Let $\hat{\mathbf{x}}_k$ denote a state estimate. Can $\hat{\mathbf{x}}_k$ be found
 - 1. in an unbiased manner, and
 - 2. in an optimal manner?
- What does the word "unbiased" mean? It means

$$E\left[\hat{\mathbf{e}}_{k}\right] = \mathbf{0}, \quad \forall k = 0, \dots, K,$$

where $\hat{\mathbf{e}}_k = \mathbf{x}_k - \hat{\mathbf{x}}_k$.

- What does the word "optimal" mean? It means an objective function is extremized (either minimized or maximized).
- BLUE "best, linear, unbiased, estimator".

Consider the predict-correct estimator structure,

$$\begin{split} \check{\mathbf{x}}_k &= \mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1} + \mathbf{G}_{k-1} \mathbf{u}_{k-1}, \\ \hat{\mathbf{x}}_k &= \check{\mathbf{x}}_k + \mathbf{K}_k (\mathbf{y}_k - \check{\mathbf{y}}_k), \end{split}$$

where

- $\check{\mathbf{x}}_k$ is the *a priori*, or predicted, state estimate,
- $\check{\mathbf{y}}_k = \mathbf{H}_k \check{\mathbf{x}}_k$ is the predicted measurement, and
- $\hat{\mathbf{x}}_k$ is the *a posteriori*, or corrected, state estimate.

Define

- $\check{\mathbf{e}}_k = \mathbf{x}_k \check{\mathbf{x}}_k$, the *a priori*, or predicted, error,
- $\check{\mathbf{P}}_k = E\left[\check{\mathbf{e}}_k\check{\mathbf{e}}_k^{\mathsf{T}}\right]$, the *a priori*, or predicted, covariance,
- $\hat{\mathbf{e}}_k = \mathbf{x}_k \hat{\mathbf{x}}_k$, the *a posteriori*, or corrected, error,
- $\hat{\mathbf{P}}_k = E\left[\hat{\mathbf{e}}_k \hat{\mathbf{e}}_k^{\mathsf{T}}\right]$, the *a posteriori*, or corrected, covariance,
- $\check{\rho}_k = \mathbf{y}_k \check{\mathbf{y}}_k$ the innovation, or the residual,
- $\check{\mathbf{P}}_{k}^{\mathbf{y}_{k}\mathbf{y}_{k}} = E\left[\check{\boldsymbol{\rho}}_{k}\check{\boldsymbol{\rho}}_{k}^{\mathsf{T}}\right]$, the covariance associated with the innovation, and
- $\check{\mathbf{P}}_{k}^{\mathbf{x}_{k}\mathbf{y}_{k}} = E\left[\check{\mathbf{e}}_{k}\check{\boldsymbol{\rho}}_{k}^{\mathsf{T}}\right]$, the cross covariance.

• Given $\hat{\mathbf{x}}_{k-1}$, $\hat{\mathbf{P}}_{k-1}$, and \mathbf{u}_{k-1} , the predicted state is

$$\check{\mathbf{x}}_k = \mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1} + \mathbf{G}_{k-1} \mathbf{u}_{k-1}.$$

The predicted covariance is

$$\begin{split} \check{\mathbf{P}}_{k} &= E\left[\check{\mathbf{e}}_{k}\check{\mathbf{e}}_{k}^{\mathsf{T}}\right] \\ &= E\left[\left(\mathbf{x}_{k}-\check{\mathbf{x}}_{k}\right)\check{\mathbf{e}}_{k}^{\mathsf{T}}\right] \\ &= E\left[\left(\mathbf{F}_{k-1}\mathbf{x}_{k-1}+\mathbf{G}_{k-1}\mathbf{u}_{k-1}+\mathbf{L}_{k-1}\mathbf{w}_{k-1}-\mathbf{F}_{k-1}\check{\mathbf{x}}_{k}-\mathbf{G}_{k-1}\mathbf{u}_{k-1}\right)\check{\mathbf{e}}_{k}^{\mathsf{T}}\right] \\ &= E\left[\left(\mathbf{F}_{k-1}\hat{\mathbf{e}}_{k-1}+\mathbf{L}_{k-1}\mathbf{w}_{k-1}\right)(\hat{\mathbf{e}}_{k-1}^{\mathsf{T}}\mathbf{F}_{k-1}^{\mathsf{T}}+\mathbf{w}_{k-1}^{\mathsf{T}}\mathbf{L}_{k-1}^{\mathsf{T}})\right] \\ &= \mathbf{F}_{k-1}E\left[\hat{\mathbf{e}}_{k-1}\hat{\mathbf{e}}_{k-1}^{\mathsf{T}}\right]\mathbf{F}_{k-1}^{\mathsf{T}}+\mathbf{F}_{k-1}E\left[\hat{\mathbf{e}}_{k-1}\mathbf{w}_{k-1}^{\mathsf{T}}\right]\mathbf{L}_{k-1}^{\mathsf{T}} \\ &+ \mathbf{L}_{k-1}E\left[\mathbf{w}_{k-1}\hat{\mathbf{e}}_{k-1}^{\mathsf{T}}\right]\mathbf{F}_{k-1}^{\mathsf{T}}+\mathbf{L}_{k-1}E\left[\mathbf{w}_{k-1}\mathbf{w}_{k-1}^{\mathsf{T}}\right]\mathbf{L}_{k-1}^{\mathsf{T}} \\ &= \mathbf{F}_{k-1}\hat{\mathbf{P}}_{k-1}\mathbf{F}_{k-1}^{\mathsf{T}}+\mathbf{L}_{k-1}\mathbf{Q}_{k}\mathbf{L}_{k-1}^{\mathsf{T}} \end{split}$$

where $E\left[\mathbf{w}_{k-1}\hat{\mathbf{e}}_{k-1}^{\mathsf{T}}\right] = \mathbf{0}$, $\hat{\mathbf{P}}_{k-1} = E\left[\hat{\mathbf{e}}_{k-1}\hat{\mathbf{e}}_{k-1}^{\mathsf{T}}\right]$, and $\mathbf{Q}_{k-1} = E\left[\mathbf{w}_{k-1}\mathbf{w}_{k-1}^{\mathsf{T}}\right]$.

- ► Given the prediction, $\check{\mathbf{x}}_k$, a gain matrix $\mathbf{K} \in \mathbb{R}^{n_x \times n_y}$, and the measurement \mathbf{y}_k , is the correction $\hat{\mathbf{x}}_k = \check{\mathbf{x}}_k + \mathbf{K}_k(\mathbf{y}_k \check{\mathbf{y}}_k)$ unbiased?
- Unbiased means $E[\hat{\mathbf{e}}_k] = \mathbf{0}$. Using this definition,

$$E[\hat{\mathbf{e}}_{k}] = E[\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}] = E[\mathbf{x}_{k} - \check{\mathbf{x}}_{k} - \mathbf{K}_{k}(\mathbf{y}_{k} - \check{\mathbf{y}}_{k})]$$

= $E[\mathbf{x}_{k} - \check{\mathbf{x}}_{k}] - \mathbf{K}_{k}E[\mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{M}_{k}\mathbf{v}_{k} - \mathbf{H}_{k}\check{\mathbf{x}}_{k}]$
= $E[\mathbf{x}_{k} - \check{\mathbf{x}}_{k}] - \mathbf{K}_{k}\mathbf{H}_{k}E[\mathbf{x}_{k} - \check{\mathbf{x}}_{k}] - \mathbf{K}_{k}\mathbf{M}_{k}E[\mathbf{v}_{k}] = (\mathbf{1} - \mathbf{K}_{k}\mathbf{H}_{k})E[\check{\mathbf{e}}_{k}].$ (2)

Next, note that

$$E[\check{\mathbf{e}}_{k}] = E[\mathbf{x}_{k} - \check{\mathbf{x}}_{k}]$$

= $E[\mathbf{F}_{k-1}\mathbf{x}_{k-1} + \mathbf{G}_{k-1}\mathbf{u}_{k-1} + \mathbf{L}_{k-1}\mathbf{w}_{k-1} - \mathbf{F}_{k-1}\hat{\mathbf{x}}_{k-1} - \mathbf{G}_{k-1}\mathbf{u}_{k-1}]$
= $\mathbf{F}_{k-1}E[\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}] + \mathbf{L}_{k-1}E[\mathbf{w}_{k-1}] = \mathbf{F}_{k-1}E[\hat{\mathbf{e}}_{k-1}].$ (3)

- ▶ Provided $\hat{\mathbf{e}}_0 \sim \mathcal{N}(\mathbf{0}, \hat{\mathbf{P}}_0),^2$
 - then $E[\check{\mathbf{e}}_1] = \mathbf{0}$ from (3),
 - then $E[\hat{e}_1] = 0$ from (2),
 - then $E[\check{\mathbf{e}}_2] = \mathbf{0}$ from (3),
 - then $E[\hat{e}_2] = 0$ from (2),
 - ▶ ...
 - then $E[\hat{\mathbf{e}}_k] = \mathbf{0}$ from (2), ...
- ln turn, the estimate $\hat{\mathbf{x}}_k$ is unbiased.

 ${}^{2}\hat{e}_{0} \sim \mathcal{N}(0, \hat{P}_{0})$ does *not* mean that $\hat{e}_{0} = 0$; it means the pdf associated with \hat{e}_{0} has zero mean and covariance \hat{P}_{0} .

An Optimization Problem

Consider the cost function

$$J_k(\mathbf{K}_k) = \operatorname{tr}(\hat{\mathbf{P}}_k),$$

where
$$\hat{\mathbf{P}}_k = E\left[\hat{\mathbf{e}}_k \hat{\mathbf{e}}_k^{\mathsf{T}}\right]$$
, $\hat{\mathbf{e}}_k = \mathbf{x}_k - \hat{\mathbf{x}}_k$.

- Q. Why minimize this cost function as a function of \mathbf{K}_k ?
- A. Doing so minimizes the error covariance, which in turn means minimizing the uncertainty in the state-estimation error.

First, what is
$$\hat{\mathbf{P}}_k = E\left[\hat{\mathbf{e}}_k \hat{\mathbf{e}}_k^{\mathsf{T}}\right]$$
? Using

$$\begin{aligned} \hat{\mathbf{e}}_k &= \mathbf{x}_k - \hat{\mathbf{x}}_k \\ &= \mathbf{x}_k - \check{\mathbf{x}}_k - \mathbf{K}_k (\mathbf{y}_k - \check{\mathbf{y}}_k) \\ &= \check{\mathbf{e}}_k - \mathbf{K}_k \mathbf{H}_k (\mathbf{x}_k - \check{\mathbf{x}}_k) - \mathbf{K}_k \mathbf{M}_k \mathbf{v}_k \\ &= (\mathbf{1} - \mathbf{K}_k \mathbf{H}_k) \check{\mathbf{e}}_k - \mathbf{K}_k \mathbf{M}_k \mathbf{v}_k \quad \dots \end{aligned}$$

▶ ... it follows that

$$\begin{split} \hat{\mathbf{P}}_{k} &= E\left[\hat{\mathbf{e}}_{k}\hat{\mathbf{e}}_{k}^{\mathsf{T}}\right] \\ &= E\left[\left((\mathbf{1}-\mathbf{K}_{k}\mathbf{H}_{k})\check{\mathbf{e}}_{k}-\mathbf{K}_{k}\mathbf{M}_{k}\mathbf{v}_{k}\right)\left(\check{\mathbf{e}}_{k}^{\mathsf{T}}(\mathbf{1}-\mathbf{H}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}})-\mathbf{v}_{k}^{\mathsf{T}}\mathbf{M}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}}\right)\right] \\ &= E\left[(\mathbf{1}-\mathbf{K}_{k}\mathbf{H}_{k})\check{\mathbf{e}}_{k}\check{\mathbf{e}}_{k}^{\mathsf{T}}(\mathbf{1}-\mathbf{H}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}})-(\mathbf{1}-\mathbf{K}_{k}\mathbf{H}_{k})\check{\mathbf{e}}_{k}\mathbf{v}_{k}^{\mathsf{T}}\mathbf{M}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}}\right] \\ &= (\mathbf{1}-\mathbf{K}_{k}\mathbf{M}_{k}\mathbf{v}_{k}\check{\mathbf{e}}_{k}^{\mathsf{T}}(\mathbf{1}-\mathbf{H}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}})+\mathbf{K}_{k}\mathbf{M}_{k}\mathbf{v}_{k}\mathbf{v}_{k}^{\mathsf{T}}\mathbf{M}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}}\right] \\ &= (\mathbf{1}-\mathbf{K}_{k}\mathbf{H}_{k})E\left[\check{\mathbf{e}}_{k}\check{\mathbf{e}}_{k}^{\mathsf{T}}\right](\mathbf{1}-\mathbf{H}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}})-(\mathbf{1}-\mathbf{K}_{k}\mathbf{H}_{k})E\left[\check{\mathbf{e}}_{k}\mathbf{v}_{k}^{\mathsf{T}}\right]\mathbf{M}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}} \\ &-\mathbf{K}_{k}\mathbf{M}_{k}E\left[\mathbf{v}_{k}\check{\mathbf{e}}_{k}^{\mathsf{T}}\right](\mathbf{1}-\mathbf{H}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}})+\mathbf{K}_{k}\mathbf{M}_{k}E\left[\mathbf{v}_{k}\mathbf{v}_{k}^{\mathsf{T}}\right]\mathbf{M}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}} \\ &= (\mathbf{1}-\mathbf{K}_{k}\mathbf{H}_{k})\check{\mathbf{P}}_{k}(\mathbf{1}-\mathbf{K}_{k}\mathbf{H}_{k})^{\mathsf{T}}+\mathbf{K}_{k}\mathbf{M}_{k}\mathbf{R}_{k}\mathbf{M}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}}, \end{split}$$

where $E\left[\check{\mathbf{e}}_k \mathbf{v}_k^\mathsf{T}\right] = \mathbf{0}$.

• Using a slightly different form of $\hat{\mathbf{P}}_k$,

$$\hat{\mathbf{P}}_{k} = \check{\mathbf{P}}_{k} - \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\mathsf{T}} \mathbf{K}_{k}^{\mathsf{T}} - \mathbf{K}_{k} \mathbf{H}_{k} \check{\mathbf{P}}_{k} + \mathbf{K}_{k} \left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\mathsf{T}} + \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\mathsf{T}} \right) \mathbf{K}_{k}^{\mathsf{T}},$$

then computing $\frac{\partial J_k(\mathbf{K})}{\partial \mathbf{K}}$ and setting the result to zero gives

$$\frac{\partial J_k(\mathbf{K})}{\partial \mathbf{K}} = -2\check{\mathbf{P}}_k\mathbf{H}_k^{\mathsf{T}} + 2\mathbf{K}_k\left(\mathbf{H}_k\check{\mathbf{P}}_k\mathbf{H}_k^{\mathsf{T}} + \mathbf{M}_k\mathbf{R}_k\mathbf{M}_k^{\mathsf{T}}\right) = \mathbf{0}.$$

Rearranging, and solving for K_k, results in

$$\mathbf{K}_{k} \left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\mathsf{T}} + \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\mathsf{T}} \right) = \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\mathsf{T}},$$

$$\mathbf{K}_{k} = \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\mathsf{T}} \left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\mathsf{T}} + \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\mathsf{T}} \right)^{-1}.$$
 (4)

- \blacktriangleright **K**_k is called the *Kalman gain*.
- The inverse in (4) always exists. Why?

Summary of the Kalman Filter

System:	\mathbf{x}_k	=	$\mathbf{F}_{k-1}\mathbf{x}_{k-1} + \mathbf{G}_{k-1}\mathbf{u}_{k-1} + \mathbf{L}_{k-1}\mathbf{w}_{k-1}$
	\mathbf{y}_k	=	$\mathbf{H}_k \mathbf{x}_k + \mathbf{M}_k \mathbf{v}_k$
	\mathbf{w}_k	\sim	$\mathcal{N}(0,\mathbf{Q}_k)$
	\mathbf{v}_k	\sim	$\mathcal{N}(0,\mathbf{R}_k)$
Initialization:	$\hat{\mathbf{x}}_0$	=	$E\left[\mathbf{x}_{0} ight]$
	$\hat{\mathbf{P}}_0$	=	$E\left[\left(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0} ight)\left(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0} ight)^{T} ight]$
Prediction:	$\check{\mathbf{x}}_k$	=	$\mathbf{F}_{k-1}\hat{\mathbf{x}}_{k-1} + \mathbf{G}_{k-1}\mathbf{u}_{k-1}$
	$\check{\mathbf{P}}_k$	=	$\mathbf{F}_{k-1} \hat{\mathbf{P}}_{k-1} \mathbf{F}_{k-1}^T + \mathbf{L}_{k-1} \mathbf{Q}_{k-1} \mathbf{L}_{k-1}^T$
Correction:	\mathbf{V}_k	=	$\mathbf{H}_k \check{\mathbf{P}}_k \mathbf{H}_k^T + \mathbf{M}_k \mathbf{R}_k \mathbf{M}_k^T$
	\mathbf{K}_k	=	$\check{\mathbf{P}}_k \mathbf{H}_k^{T} \mathbf{V}_k^{-1}$
	$\hat{\mathbf{x}}_k$	=	$\check{\mathbf{x}}_k + \mathbf{K}_k (\mathbf{y}_k - \check{\mathbf{y}}_k)$
	$\hat{\mathbf{P}}_k$	=	$(1 - \mathbf{K}_k \mathbf{H}_k) \check{\mathbf{P}}_k (1 - \mathbf{K}_k \mathbf{H}_k)^T + \mathbf{K}_k \mathbf{M}_k \mathbf{R}_k \mathbf{M}_k^T \mathbf{K}_k^T$
		=	$\check{\mathbf{P}}_k - \mathbf{K}_k \mathbf{H}_k \check{\mathbf{P}}_k$

Derivation of the Extended Kalman Filter (EKF)

 Consider a discrete-time system described by nonlinear process and measurement (observation) models,

$$\begin{split} \mathbf{x}_k &= \mathbf{f}_{k-1}(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}), & \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_k), \\ \mathbf{y}_k &= \mathbf{g}_k(\mathbf{x}_k, \mathbf{v}_k), & \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k). \end{split}$$

- ► To derive the EKF the nonlinear discrete-time system is linearized.
- Perform a Taylor series expansion in \mathbf{x}_k , \mathbf{w}_k , and \mathbf{v}_k about some nominal $\bar{\mathbf{x}}_k$, $\bar{\mathbf{w}}_k$, $\bar{\mathbf{v}}_k$ such that

$$\begin{aligned} \mathbf{x}_k &= \bar{\mathbf{x}}_k + \delta \mathbf{x}_k, \\ \mathbf{w}_k &= \bar{\mathbf{w}}_k + \delta \mathbf{w}_k, \\ \mathbf{v}_k &= \bar{\mathbf{v}}_k + \delta \mathbf{v}_k, \end{aligned}$$

where $\delta \mathbf{x}_k$, $\delta \mathbf{w}_k$, and $\delta \mathbf{v}_k$ are perturbations.

► To be consistent with the assumed disturbance and noise (i.e., the expected value of the disturbance and noise), w w and v w are both zero, that is, w = 0 and v = 0.

Perturbing the process model,

$$\mathbf{x}_{k} = \bar{\mathbf{x}}_{k} + \delta \mathbf{x}_{k} = \mathbf{f}_{k-1}(\bar{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \bar{\mathbf{w}}_{k-1}) + \mathbf{F}_{k-1}\delta \mathbf{x}_{k-1} + \mathbf{L}_{k-1}\delta \mathbf{w}_{k-1} + \mathsf{H.O.T.}$$

where

$$\begin{split} \mathbf{F}_{k-1} &= \left. \frac{\partial \mathbf{f}_{k-1}(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1})}{\partial \mathbf{x}_{k-1}} \right|_{\bar{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \bar{\mathbf{w}}_{k-1}}, \\ \mathbf{L}_{k-1} &= \left. \frac{\partial \mathbf{f}_{k-1}(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1})}{\partial \mathbf{w}_{k-1}} \right|_{\bar{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \bar{\mathbf{w}}_{k-1}}. \end{split}$$

Perturbing the measurement model,

$$\mathbf{y}_k = \bar{\mathbf{y}}_k + \delta \mathbf{y}_k = \mathbf{g}_k(\bar{\mathbf{x}}_k, \bar{\mathbf{v}}_k) + \mathbf{H}_k \delta \mathbf{x}_k + \mathbf{M}_k \delta \mathbf{v}_k + \mathsf{H.O.T.},$$

where

$$\begin{split} \mathbf{H}_{k} &= \left. \frac{\partial \mathbf{g}_{k}(\mathbf{x}_{k}, \mathbf{v}_{k})}{\partial \mathbf{x}_{k}} \right|_{\bar{\mathbf{x}}_{k}, \bar{\mathbf{v}}_{k}}, \\ \mathbf{M}_{k} &= \left. \frac{\partial \mathbf{g}_{k}(\mathbf{x}_{k}, \mathbf{v}_{k})}{\partial \mathbf{v}_{k}} \right|_{\bar{\mathbf{x}}_{k}, \bar{\mathbf{v}}_{k}}. \end{split}$$

Note L_k and M_k must be full column and row rank, respectively.

► Using $\mathbf{x}_k = \bar{\mathbf{x}}_k + \delta \mathbf{x}_k$ and $\mathbf{w}_k = \bar{\mathbf{w}}_k + \delta \mathbf{w}_k = \mathbf{0} + \delta \mathbf{w}_k$, and dropping H.O.T., rewrite the linearized process model as

$$\begin{aligned} \mathbf{x}_{k} &= \mathbf{f}_{k-1}(\bar{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}) + \mathbf{F}_{k-1}\delta\mathbf{x}_{k-1} + \mathbf{L}_{k-1}\delta\mathbf{w}_{k-1} \\ &= \mathbf{f}_{k-1}(\bar{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}) + \mathbf{F}_{k-1}(\mathbf{x}_{k-1} - \bar{\mathbf{x}}_{k-1}) + \mathbf{L}_{k-1}\mathbf{w}_{k-1} \\ &= \mathbf{F}_{k-1}\mathbf{x}_{k-1} + \underbrace{\mathbf{f}_{k-1}(\bar{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}) - \mathbf{F}_{k-1}\bar{\mathbf{x}}_{k-1}}_{\mathbf{u}_{k-1}} + \mathbf{L}_{k-1}\mathbf{w}_{k-1} \end{aligned}$$

$$=\mathbf{F}_{k-1}\mathbf{x}_{k-1}+\boldsymbol{u}_{k-1}+\mathbf{L}_{k-1}\mathbf{w}_{k-1},$$

where u_{k-1} is known.

In a similar fashion, using x_k = x̄_k + δx_k and v_k = v̄_k + δv_k = 0 + δv_k, and dropping H.O.T., rewrite the linearized measurement model as

$$\begin{split} \mathbf{y}_k &= \mathbf{g}_k(\bar{\mathbf{x}}_k, \mathbf{0}) + \mathbf{H}_k \delta \mathbf{x}_k + \mathbf{M}_k \delta \mathbf{v}_k \\ &= \mathbf{g}_k(\bar{\mathbf{x}}_k, \mathbf{0}) + \mathbf{H}_k(\mathbf{x}_k - \bar{\mathbf{x}}_k) + \mathbf{M}_k \mathbf{v}_k \\ &= \mathbf{H}_k \mathbf{x}_k + \underbrace{\mathbf{g}_k(\bar{\mathbf{x}}_k, \mathbf{0}) - \mathbf{H}_k \bar{\mathbf{x}}_k}_{\beta_k} + \mathbf{M}_k \mathbf{v}_k \\ &= \mathbf{H}_k \mathbf{x}_k + \underbrace{\mathbf{g}_k(\bar{\mathbf{x}}_k, \mathbf{0}) - \mathbf{H}_k \bar{\mathbf{x}}_k}_{\beta_k} + \mathbf{M}_k \mathbf{v}_k \end{split}$$

where β_k is *known*.

The Prediction Step

The prediction step is

$$\begin{split} \check{\mathbf{x}}_k &= \mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1} + \boldsymbol{u}_{k-1}, \\ \check{\mathbf{P}}_k &= \mathbf{F}_{k-1} \hat{\mathbf{P}}_{k-1} \mathbf{F}_{k-1}^\mathsf{T} + \mathbf{L}_{k-1} \mathbf{Q}_{k-1} \mathbf{L}_{k-1}^\mathsf{T}, \end{split}$$

where \mathbf{F}_{k-1} , u_{k-1} , and \mathbf{L}_{k-1} are evaluated at the best prior estimate of the state, $\hat{\mathbf{x}}_{k-1}$ (i.e., $\hat{\mathbf{x}}_{k-1}$ replaces $\bar{\mathbf{x}}_{k-1}$ in \mathbf{F}_{k-1} , u_{k-1} , and \mathbf{L}_{k-1}).

The computation of x
_k above is equivalent to

$$\begin{split} \check{\mathbf{x}}_{k} &= \mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1} + \mathbf{u}_{k-1} \\ &= \mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1} + (\mathbf{f}_{k-1} (\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}) - \mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}) \\ &= \mathbf{f}_{k-1} (\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}) \end{split}$$

which is just the nonlinear discrete time process model evaluated at $\hat{\mathbf{x}}_{k-1}$, \mathbf{u}_{k-1} , and $\mathbf{w}_{k-1} = \mathbf{0}$.

- ► As with the Kalman filter, we perform a prediction step using the expected value of the disturbance, w_{k-1} = 0.
- ► It appears we are ignoring the disturbance, but we are not; if $\mathbf{w}_{k-1} \sim \mathcal{N}(\tilde{\mathbf{w}}_{k-1}, \mathbf{Q}_{k-1})$ then the prediction would be $\check{\mathbf{x}}_k = \mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \tilde{\mathbf{w}}_{k-1}).$

The Correction Step

The correction is given by

$$\begin{split} \mathbf{V}_{k} &= \mathbf{H}_{k}\check{\mathbf{P}}_{k}\mathbf{H}_{k}^{\mathsf{T}} + \mathbf{M}_{k}\mathbf{R}_{k}\mathbf{M}_{k}^{\mathsf{T}}, \\ \mathbf{K}_{k} &= \check{\mathbf{P}}_{k}\mathbf{H}_{k}^{\mathsf{T}}\mathbf{V}_{k}^{-1}, \\ \hat{\mathbf{x}}_{k} &= \check{\mathbf{x}}_{k} + \mathbf{K}_{k}(\mathbf{y}_{k} - \check{\mathbf{y}}_{k}), \\ \hat{\mathbf{P}}_{k} &= (\mathbf{1} - \mathbf{K}_{k}\mathbf{H}_{k})\check{\mathbf{P}}_{k}(\mathbf{1} - \mathbf{K}_{k}\mathbf{H}_{k})^{\mathsf{T}} + \mathbf{K}_{k}\mathbf{M}_{k}\mathbf{R}_{k}\mathbf{M}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}} \\ &= \check{\mathbf{P}}_{k} - \mathbf{K}_{k}\mathbf{H}_{k}\check{\mathbf{P}}_{k} - \check{\mathbf{P}}_{k}\mathbf{H}_{k}^{\mathsf{T}}\mathbf{K}_{k}^{\mathsf{T}} + \mathbf{K}_{k}\mathbf{V}_{k}\mathbf{K}_{k}^{\mathsf{T}}, \end{split}$$

where \mathbf{H}_k and \mathbf{M}_k are evaluated at $\check{\mathbf{x}}_k$ (i.e., $\check{\mathbf{x}}_k$ replaces $\bar{\mathbf{x}}_k$ in \mathbf{H}_k and \mathbf{M}_k). The predicted measurement $\check{\mathbf{y}}_k$ is

$$\check{\mathbf{y}}_k = \mathbf{H}_k \check{\mathbf{x}}_k + \check{\boldsymbol{\beta}}_k,$$

where \mathbf{H}_k and $\check{\boldsymbol{\beta}}_k$ are evaluated at $\check{\mathbf{x}}_k$.

The prediction measurement is equivalent to

$$\begin{split} \check{\mathbf{y}}_k &= \mathbf{H}_k \check{\mathbf{x}}_k + \check{\boldsymbol{\beta}}_k \\ &= \mathbf{H}_k \check{\mathbf{x}}_k + (\mathbf{g}_k (\check{\mathbf{x}}_k, \mathbf{0}) - \mathbf{H}_k \check{\mathbf{x}}_k) \\ &= \mathbf{g}_k (\check{\mathbf{x}}_k, \mathbf{0}), \end{split}$$

the nonlinear discrete-time measurement model evaluated at $\check{\mathbf{x}}_k$, the a priori state estimate.

- Again, we perform the correction step using the expected value of the noise, $\mathbf{v}_k = \mathbf{0}$.
- It appears we are ignoring the noise, but we are not; if v_k ~ N(ṽ_k, R_k) then the correction would be ỹ_k = g_k(x̃_k, ṽ_k).

The correction is then also given by

$$\begin{split} \hat{\mathbf{x}}_k &= \check{\mathbf{x}}_k + \mathbf{K}_k(\mathbf{y}_k - \check{\mathbf{y}}_k), \\ &= \check{\mathbf{x}}_k + \mathbf{K}_k\left(\mathbf{y}_k - \mathbf{g}_k(\check{\mathbf{x}}_k, \mathbf{0})\right). \end{split}$$

Summary of the Extended Kalman Filter

System:	\mathbf{x}_k	=	$\mathbf{f}_{k-1}(\mathbf{x}_{k-1},\mathbf{u}_{k-1},\mathbf{w}_{k-1})$
	\mathbf{y}_k	=	$\mathbf{g}_k(\mathbf{x}_k,\mathbf{v}_k)$
	\mathbf{w}_k	\sim	$\mathcal{N}(0,\mathbf{Q}_k)$
	\mathbf{v}_k	\sim	$\mathcal{N}(0,\mathbf{R}_k)$
Initialization:	$\hat{\mathbf{x}}_0$	=	$E\left[\mathbf{x}_{0} ight]$
	$\hat{\mathbf{P}}_0$	=	$E\left[\left(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0} ight)\left(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0} ight)^{T} ight]$
Prediction:	$\check{\mathbf{x}}_k$	=	$\mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1},\mathbf{u}_{k-1},0)$
	$\check{\mathbf{P}}_k$	=	$\mathbf{F}_{k-1}\hat{\mathbf{P}}_{k-1}\mathbf{F}_{k-1}^T + \mathbf{L}_{k-1}\mathbf{Q}_{k-1}\mathbf{L}_{k-1}^T$
Correction:	\mathbf{V}_k :	=	$\mathbf{H}_k \check{\mathbf{P}}_k \mathbf{H}_k^T + \mathbf{M}_k \mathbf{R}_k \mathbf{M}_k^T$
	\mathbf{K}_k	=	$\check{\mathbf{P}}_k \mathbf{H}_k^{T} \mathbf{V}_k^{-1}$
	$\hat{\mathbf{x}}_k$	=	$\check{\mathbf{x}}_k + \mathbf{K}_k(\mathbf{y}_k - \mathbf{g}_k(\check{\mathbf{x}}_k, 0))$
	$\hat{\mathbf{P}}_k$:	=	$(1 - \mathbf{K}_k \mathbf{H}_k) \check{\mathbf{P}}_k (1 - \mathbf{K}_k \mathbf{H}_k)^T + \mathbf{K}_k \mathbf{M}_k \mathbf{R}_k \mathbf{M}_k^T \mathbf{K}_k^T$
		=	$\check{\mathbf{P}}_k - \mathbf{K}_k \mathbf{H}_k \check{\mathbf{P}}_k$

The Iterative EKF

Recall that

$$egin{aligned} \mathbf{H}_k &= \left. rac{\partial \mathbf{g}_k(\mathbf{x}_k, \mathbf{v}_k)}{\partial \mathbf{x}_k}
ight|_{\mathbf{\check{x}}_k, \mathbf{0}}, \ \mathbf{M}_k &= \left. rac{\partial \mathbf{g}_k(\mathbf{x}_k, \mathbf{v}_k)}{\partial \mathbf{v}_k}
ight|_{\mathbf{\check{x}}_k, \mathbf{0}}, \end{aligned}$$

which is to say that \mathbf{H}_k and \mathbf{M}_k are computed using $\check{\mathbf{x}}_k$ after the prediction step.

- Well, after the correction step we have a better estimate of the state, namely x̂_k.
- The idea behind the iterative EKF is to recompute H_k and M_k using a better estimate of the state, then recompute K_k, and then finally recompute x̂_k and P̂_k.
- This process is repeated until convergence.

Step-by-Step Details

1. Execute the prediction step normally, that is,

$$\begin{split} \check{\mathbf{x}}_k &= \mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}), \\ \check{\mathbf{P}}_k &= \mathbf{F}_{k-1}\hat{\mathbf{P}}_{k-1}\mathbf{F}_{k-1}^\mathsf{T} + \mathbf{L}_{k-1}\mathbf{Q}_{k-1}\mathbf{L}_{k-1}^\mathsf{T}, \end{split}$$

and set the linearization point to $\hat{x}_{k,\mathrm{lin}} = \check{x}_k.$

2. Compute

$$egin{aligned} \mathbf{H}_k &= \left. rac{\partial \mathbf{g}_k(\mathbf{x}_k, \mathbf{v}_k)}{\partial \mathbf{x}_k}
ight|_{\hat{\mathbf{x}}_{k, \mathrm{lin}}, \mathbf{0}}, \ \mathbf{M}_k &= \left. rac{\partial \mathbf{g}_k(\mathbf{x}_k, \mathbf{v}_k)}{\partial \mathbf{v}_k}
ight|_{\hat{\mathbf{x}}_{k, \mathrm{lin}}, \mathbf{0}}. \end{aligned}$$

3. Compute

$$\begin{split} \mathbf{K}_{k} &= \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\mathsf{T}} \left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\mathsf{T}} + \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\mathsf{T}} \right)^{-1}, \\ \hat{\mathbf{x}}_{k} &= \check{\mathbf{x}}_{k} + \mathbf{K}_{k} (\mathbf{y}_{k} - (\mathbf{g}(\hat{\mathbf{x}}_{k,\mathrm{lin}}, \mathbf{0}) + \mathbf{H}_{k}(\check{\mathbf{x}}_{k} - \hat{\mathbf{x}}_{k,\mathrm{lin}}))). \end{split}$$

4. If
$$\|\hat{\mathbf{x}}_k - \hat{\mathbf{x}}_{k,\lim}\|_2 \ge \epsilon$$
 set $\hat{\mathbf{x}}_{k,\lim} = \hat{\mathbf{x}}_k$ and go back to Step 2.
If $\|\hat{\mathbf{x}}_k - \hat{\mathbf{x}}_{k,\lim}\|_2 < \epsilon$ go to time step $k + 1$.

5. Compute

$$\hat{\mathbf{P}}_k = (\mathbf{1} - \mathbf{K}_k \mathbf{H}_k) \check{\mathbf{P}}_k (\mathbf{1} - \mathbf{K}_k \mathbf{H}_k)^\mathsf{T} + \mathbf{K}_k \mathbf{M}_k \mathbf{R}_k \mathbf{M}_k^\mathsf{T} \mathbf{K}_k^\mathsf{T}$$

Thank you for your attention.

Questions?

james.richard.forbes@mcgill.ca

Presentation created using LATEX and Beamer.

References

Material herein is based on [1, 2, 3, 4, 5, 6, 7].

- T. D. Bartoot, "State estimation for aerospace vehicles; AER1513 course notes and experimental dataset," University of Toronto Institute for Aerospace Studies, AER1513-002, Rev: 1.0, December 2009.
- [2] R. Eustice, "NA568/EECS568 mobile robotics: Methods and algorithms," University of Michigan, 2015.
- [3] T. D. Barfoot, State Estimation for Robotics. New York, NY: Cambridge University Press, 2017.
- [4] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, NY: Academic Press, 1970.
- [5] D. Simon, Optimal State Estimation. Hoboken, NJ: John Wiley & Sons, Inc., 2006.
- [6] R. F. Stengel, Optimal Control and Estimation. New York, NY: Dover, 1994.
- [7] C. E. Rasmussen and C. K. Williams, Gaussian processes for Machine Learning. MIT press Cambridge, MA, 2006.