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I Sensors rarely measure states of interest directly. How do we “back out”
states that are not measured directly?
I Within an IMU there is a rate gyro, an accelerometer, and often a

magnetometer.
I The rate gyro measures ω−→

ba (resolved in what frame?), not a set of Euler
angles θba, not a quaternion qba, nor a DCM Cba, and not a set of
Euler-angle rates θ̇

ba
, not a quaternion rate q̇ba, nor a DCM rate Ċba.1

I The accelerometer measures a−→ (resolved in what frame?), not v−→, and not
r−→.

I A magnetometer measures m−→ (resolved in what frame?), not θba.
I There’s no such thing as an “attitude sensor”.

I Sensor data is imperfect; noise corrupts all measurements, and some
measurements are (significantly) biased.

I Because noise and bias are random, we rely on concepts from probability
theory to describe the properties of noise and bias that we are interested
in filtering.

1 ω−→
ba is the angular velocity of frame b relative to frame a. A rate gyro measures ω−→

ba

(resolved in what frame?), and not a set of Euler angles, nor a set of Euler angle rates, nor a
quaternion, nor a quaternion rate.
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The Gaussian Distribution

I A continuous random variable is said to have a normal or Gaussian distribution if
the pdf associated with the random variable x is given by

p(x; x̄, σ2) =
1√

2πσ2
exp

(
− (x− x̄)2

2σ2

)
.

I p(x; x̄, σ2) being a pdf means that∫ ∞
−∞

1√
2πσ2

exp

(
− (x− x̄)2

2σ2

)
dx = 1,

where the mean is

x̄ =

∫ ∞
−∞

x
1√

2πσ2
exp

(
− (x− x̄)2

2σ2

)
dx,

and the variance is

σ2 =

∫ ∞
−∞

(x− x̄)2 1√
2πσ2

exp

(
− (x− x̄)2

2σ2

)
dx.

3/29



−1 0 1 2 3 4 5
0

0.5

1

1.5

x

p
(x

)

 

 

σ = 1/3

σ = 2/3

σ = 1

Figure: Gaussian pdfs where x̄ = 2 and σ takes on values of 1/3, 2/3, and 1.

Shown in Figure 1 are three normal distributions. The mean of each is
distribution is x̄ = 2, while the standard deviation of each are 1/3, 2/3, and 1,
respectively.

A short-hand notation for indicating x is normally distributed is x ∼ N (x̄, σ2).
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The Multidimensional Case
I In the N -dimensional case, a continuous random column matrix x ∈ RN is said to

have a normal or Gaussian distribution if the pdf associated with x is given by

p(x; x̄,Q) =
1√

(2π)N det Q
exp

(
− 1

2
(x− x̄)T Q−1 (x− x̄)

)
,

where x̄ is the mean and Q is the covariance matrix.
I The covariance matrix is symmetric and positive definite (thus ensuring Q is not

singular, and thus Q−1 exists).
I Being a pdf, it can be shown that∫ ∞

−∞

1√
(2π)N det Q

exp
(
− 1

2
(x− x̄)T Q−1 (x− x̄)

)
dx = 1,

the mean is

x̄ =

∫ ∞

−∞
x 1√

(2π)N det Q
exp

(
− 1

2
(x− x̄)T Q−1 (x− x̄)

)
dx,

and the covariance is

Q =

∫ ∞

−∞
(x− x̄)(x− x̄)T

1√
(2π)N det Q

exp
(
− 1

2
(x− x̄)T Q−1 (x− x̄)

)
dx.

I A short-hand notation for indicating x is normally distributed is x ∼ N (x̄,Q).
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The Static Case
I Consider [

x
y

]
∼ N

([
µx

µy

]
,

[
Σxx Σxy

ΣT
xy Σyy

])
. (1)

I Consider the affine estimator
x̂ = Ky + `,

where x̂ is the estimate of the state x given the measurement y.
I What form should K and ` take?
I How can a priori information, such as that given in (1), be used to generate the

estimated state x̂?
I Define the error e = x− x̂.
I An unbiased estimate is desired, meaning E [e] = 0.
I Using this definition,

0 = E [x− x̂] = E [x−Ky− `] = E [x]− E [Ky]− ` = µx −Kµy − `,
` = µx −Kµy.

I Thus, an unbiased estimator is of the form

x̂ = Ky + `

= Ky + µx −Kµy

= µx + K(y− µy).
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I How should we pick K to provide a best estimate?
I Consider

P = E
[
eeT
]

= E
[
(x− x̂)(x− x̂)T

]
= E

[
(x− µx −K(y− µy))(x− µx −K(y− µy))T

]
= E

[
(x− µx)(x− µx)T

]
− E

[
(x− µx)(y− µy)T

]
KT

−KE [(y− µy)(x− µx)] + KE
[
(y− µy)(y− µy)T

]
KT

= Σxx −ΣxyKT −KΣT
xy + KΣyyKT

I Recall that tr(A) = tr(AT), tr(A + B) = tr(A) + tr(B) and that
tr(CD) = tr(DC) for all A,B ∈ Rn×n, C ∈ Rn×m, D ∈ Rm×n.

I Write J(K) = tr(P) as

J(K) = tr(Σxx −ΣxyKT −KΣT
xy + KΣyyKT)

= tr(Σxx)− tr(ΣxyKT)− tr(KΣT
xy) + tr(KΣyyKT)

= tr(Σxx)− 2tr(ΣxyKT) + tr(KΣyyKT)
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I Consider a Taylor series expansion of a general function f(·) : Rn → R,
that is

f(x̄+δx) = f(x̄)+

[
∂f(x)

∂x

∣∣∣∣
x=x̄

]
δx+ 1

2δxT

[
∂

∂x

(
∂f(x)

∂x

T
)∣∣∣∣∣

x=x̄

]
δx+H.O.T.

where “H.O.T.” means “higher-order terms”, and

∂f(x)

∂x

∣∣∣∣
x=x̄

,
∂

∂x

(
∂f(x)

∂x

T
)∣∣∣∣∣

x=x̄

are the Jacobain and Hessian of f(·) evaluated at x = x̄, respectfully.
I A necessary condition for x̄ to be an extremum (either a maximum or a

minimum) is
∂f(x)

∂x

∣∣∣∣
x=x̄

= 0.

I When H > 0 then x̄ corresponds to a minimum.
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I Consider K = K̄ + δK and a Taylor series expansion of J(·). To this end,

J(K̄ + δK) = tr(Σxx)− 2tr(Σxy(K̄ + δK)T) + tr((K̄ + δK)Σyy(K̄ + δK)T)

= tr(Σxx)− 2tr(ΣxyK̄T
)− 2tr(ΣxyδKT)

+ tr(K̄ΣyyK̄T
) + tr(K̄ΣyyδKT) + tr(δKΣyyK̄T

) + tr(δKΣyyδKT)

= tr(Σxx)− 2tr(ΣxyK̄T
) + tr(K̄ΣyyK̄T

)︸ ︷︷ ︸
J(K̄)

− 2tr(ΣxyδKT) + 2tr(K̄ΣyyδKT) + tr(δKΣyyδKT)

= J(K̄)− 2tr(ΣxyδKT − K̄ΣyyδKT) + tr(δKΣyyδKT)

= J(K̄)− 2tr((Σxy − K̄Σyy)δKT) + tr(δKΣyyδKT)

I Thus,

∂J(K)

∂K

∣∣∣∣
K=K̄

= Σxy − K̄Σyy,
∂

∂K

(
∂J(K)

∂K

T
)∣∣∣∣∣

K=K̄

= Σyy

I Note, from the above derivation it follows that

∂tr(AXT)

∂X
= A, ∂tr(XAXT)

∂X
= 2XA.

Don’t memorize the above derivative definitions . . . understand the fundamentals,
the bigger picture . . . that being, perturbing the independent variable, a Taylor
series expansion, etc.
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I For K̄ to be an extremum,

∂J(K)

∂K

∣∣∣∣
K=K̄

= 0,

Σxy − K̄Σyy = 0,
K̄Σyy = Σxy,

K̄ = ΣxyΣ
−1
yy .

I The Hessian is Σyy > 0. Thus, K̄ = ΣxyΣ
−1
yy corresponds to a minimum

of J(K) = tr(P).
I In fact, because J(·) is convex, this minimum is a global minimum, and

thus an unique minimum.
I Thus,

x̂ = µx + K̄(y− µy)

= µx + ΣxyΣ
−1
yy (y− µy)

provides a best, unbiased, estimate of x given the measurement (or
realization) y and the a priori information given in (1).

I Often we drop the “bar” and just write K = ΣxyΣ
−1
yy .
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The Dynamic Case

I Consider a discrete-time system described by linear process
(a.k.a. motion) and measurement (a.k.a. observation) models,

xk = Fk−1xk−1 + Gk−1uk−1 + Lk−1wk−1, wk ∼ N (0,Qk),

yk = Hkxk + Mkvk, vk ∼ N (0,Rk).

I Let x̂k denote a state estimate. Can x̂k be found
1. in an unbiased manner, and
2. in an optimal manner?

I What does the word “unbiased” mean? It means

E [êk] = 0, ∀k = 0, . . . ,K,

where êk = xk − x̂k.
I What does the word “optimal” mean? It means an objective function is

extremized (either minimized or maximized).
I BLUE — “best, linear, unbiased, estimator”.
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I Consider the predict-correct estimator structure,

x̌k = Fk−1x̂k−1 + Gk−1uk−1,

x̂k = x̌k + Kk(yk − y̌k),

where
I x̌k is the a priori, or predicted, state estimate,
I y̌k = Hkx̌k is the predicted measurement, and
I x̂k is the a posteriori, or corrected, state estimate.

I Define
I ěk = xk − x̌k, the a priori, or predicted, error,
I P̌k = E

[
ěk ěTk

]
, the a priori, or predicted, covariance,

I êk = xk − x̂k, the a posteriori, or corrected, error,
I P̂k = E

[
êk êTk

]
, the a posteriori, or corrected, covariance,

I ρ̌k = yk − y̌k the innovation, or the residual,
I P̌ykyk

k = E
[
ρ̌kρ̌

T
k

]
, the covariance associated with the innovation, and

I P̌xkyk
k = E

[
ěkρ̌T

k

]
, the cross covariance.
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I Given x̂k−1, P̂k−1, and uk−1, the predicted state is

x̌k = Fk−1x̂k−1 + Gk−1uk−1.

I The predicted covariance is

P̌k = E
[
ěk ěTk

]
= E

[
(xk − x̌k)ěTk

]
= E

[
(Fk−1xk−1 + Gk−1uk−1 + Lk−1wk−1 − Fk−1x̌k −Gk−1uk−1)ěTk

]
= E

[
(Fk−1êk−1 + Lk−1wk−1)(êTk−1FT

k−1 + wT
k−1LT

k−1)
]

= Fk−1E
[
êk−1êTk−1

]
FT
k−1 + Fk−1E

[
êk−1wT

k−1

]
LT
k−1

+ Lk−1E
[
wk−1êTk−1

]
FT
k−1 + Lk−1E

[
wk−1wT

k−1

]
LT
k−1

= Fk−1P̂k−1FT
k−1 + Lk−1QkLT

k−1

where E
[
wk−1êTk−1

]
= 0, P̂k−1 = E

[
êk−1êTk−1

]
, and

Qk−1 = E
[
wk−1wT

k−1

]
.
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I Given the prediction, x̌k, a gain matrix K ∈ Rnx×ny , and the measurement yk, is
the correction x̂k = x̌k + Kk(yk − y̌k) unbiased?

I Unbiased means E [êk] = 0. Using this definition,

E [êk] = E [xk − x̂k] = E [xk − x̌k −Kk(yk − y̌k)]

= E [xk − x̌k]−KkE [Hkxk + Mkvk −Hkx̌k]

= E [xk − x̌k]−KkHkE [xk − x̌k]−KkMkE [vk] = (1−KkHk)E [ěk] . (2)

I Next, note that

E [ěk] = E [xk − x̌k]

= E [Fk−1xk−1 + Gk−1uk−1 + Lk−1wk−1 − Fk−1x̂k−1 −Gk−1uk−1]

= Fk−1E [xk−1 − x̂k−1] + Lk−1E [wk−1] = Fk−1E [êk−1] . (3)

I Provided ê0 ∼ N (0, P̂0),2

I then E [ě1] = 0 from (3),
I then E [ê1] = 0 from (2),
I then E [ě2] = 0 from (3),
I then E [ê2] = 0 from (2),
I . . .
I then E [êk] = 0 from (2), . . .

I In turn, the estimate x̂k is unbiased.
2ê0 ∼ N (0, P̂0) does not mean that ê0 = 0; it means the pdf associated with ê0 has zero mean

and covariance P̂0.
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An Optimization Problem

I Consider the cost function

Jk(Kk) = tr(P̂k),

where P̂k = E
[
êk êTk

]
, êk = xk − x̂k.

Q. Why minimize this cost function as a function of Kk?
A. Doing so minimizes the error covariance, which in turn means minimizing

the uncertainty in the state-estimation error.

I First, what is P̂k = E
[
êk êTk

]
? Using

êk = xk − x̂k

= xk − x̌k −Kk(yk − y̌k)

= ěk −KkHk(xk − x̌k)−KkMkvk
= (1−KkHk)ěk −KkMkvk . . .

15/29



I . . . it follows that

P̂k = E
[
êk êTk

]
= E

[
((1−KkHk)ěk −KkMkvk)

(
ěTk (1−HT

kKT
k )− vT

kMT
kKT

k

)]
= E

[
(1−KkHk)ěk ěTk (1−HT

kKT
k )− (1−KkHk)ěkvTkMT

kKT
k

−KkMkvk ěTk (1−HT
kKT

k ) + KkMkvkvTkMT
kKT

k

]
= (1−KkHk)E

[
ěk ěTk

]
(1−HT

kKT
k )− (1−KkHk)E

[
ěkvTk

]
MT

kKT
k

−KkMkE
[
vk ěTk

]
(1−HT

kKT
k ) + KkMkE

[
vkvT

k

]
MT

kKT
k

= (1−KkHk)P̌k(1−KkHk)T + KkMkRkMT
kKT

k ,

where E
[
ěkvTk

]
= 0.
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I Using a slightly different form of P̂k,

P̂k = P̌k − P̌kHT
kKT

k −KkHkP̌k + Kk

(
HkP̌kHT

k + MkRkMT
k

)
KT

k ,

then computing ∂Jk(K)
∂K and setting the result to zero gives

∂Jk(K)

∂K
= −2P̌kHT

k + 2Kk

(
HkP̌kHT

k + MkRkMT
k

)
= 0.

I Rearranging, and solving for Kk, results in

Kk

(
HkP̌kHT

k + MkRkMT
k

)
= P̌kHT

k ,

Kk = P̌kHT
k

(
HkP̌kHT

k + MkRkMT
k

)−1
. (4)

I Kk is called the Kalman gain.
I The inverse in (4) always exists. Why?
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Summary of the Kalman Filter

System: xk = Fk−1xk−1 + Gk−1uk−1 + Lk−1wk−1

yk = Hkxk + Mkvk
wk ∼ N (0,Qk)

vk ∼ N (0,Rk)

Initialization: x̂0 = E [x0]

P̂0 = E
[
(x0 − x̂0) (x0 − x̂0)

T
]

Prediction: x̌k = Fk−1x̂k−1 + Gk−1uk−1

P̌k = Fk−1P̂k−1FT
k−1 + Lk−1Qk−1LT

k−1

Correction: Vk = HkP̌kHT
k + MkRkMT

k

Kk = P̌kHT
kV−1

k

x̂k = x̌k + Kk(yk − y̌k)

P̂k = (1−KkHk)P̌k(1−KkHk)T + KkMkRkMT
kKT

k

= P̌k −KkHkP̌k
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Derivation of the Extended Kalman Filter (EKF)
I Consider a discrete-time system described by nonlinear process and

measurement (observation) models,

xk = fk−1(xk−1,uk−1,wk−1), wk ∼ N (0,Qk),

yk = gk(xk, vk), vk ∼ N (0,Rk).

I To derive the EKF the nonlinear discrete-time system is linearized.
I Perform a Taylor series expansion in xk, wk, and vk about some nominal

x̄k, w̄k, v̄k such that

xk = x̄k + δxk,
wk = w̄k + δwk,

vk = v̄k + δvk,

where δxk, δwk, and δvk are perturbations.
I To be consistent with the assumed disturbance and noise (i.e., the

expected value of the disturbance and noise), w̄k and v̄k are both zero,
that is, w̄k = 0 and v̄k = 0.
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I Perturbing the process model,

xk = x̄k + δxk = fk−1(x̄k−1,uk−1, w̄k−1) + Fk−1δxk−1 + Lk−1δwk−1 + H.O.T.,

where

Fk−1 =
∂fk−1(xk−1,uk−1,wk−1)

∂xk−1

∣∣∣∣
x̄k−1,uk−1,w̄k−1

,

Lk−1 =
∂fk−1(xk−1,uk−1,wk−1)

∂wk−1

∣∣∣∣
x̄k−1,uk−1,w̄k−1

.

I Perturbing the measurement model,

yk = ȳk + δyk = gk(x̄k, v̄k) + Hkδxk + Mkδvk + H.O.T.,

where

Hk =
∂gk(xk, vk)

∂xk

∣∣∣∣
x̄k,v̄k

,

Mk =
∂gk(xk, vk)

∂vk

∣∣∣∣
x̄k,v̄k

.

I Note Lk and Mk must be full column and row rank, respectively.
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I Using xk = x̄k + δxk and wk = w̄k + δwk = 0 + δwk, and dropping H.O.T.,
rewrite the linearized process model as

xk = fk−1(x̄k−1,uk−1, 0) + Fk−1δxk−1 + Lk−1δwk−1

= fk−1(x̄k−1,uk−1, 0) + Fk−1(xk−1 − x̄k−1) + Lk−1wk−1

= Fk−1xk−1 + fk−1(x̄k−1,uk−1, 0)− Fk−1x̄k−1︸ ︷︷ ︸
uk−1

+Lk−1wk−1

= Fk−1xk−1 + uk−1 + Lk−1wk−1,

where uk−1 is known.
I In a similar fashion, using xk = x̄k + δxk and vk = v̄k + δvk = 0 + δvk, and

dropping H.O.T., rewrite the linearized measurement model as

yk = gk(x̄k, 0) + Hkδxk + Mkδvk
= gk(x̄k, 0) + Hk(xk − x̄k) + Mkvk

= Hkxk + gk(x̄k, 0)−Hkx̄k︸ ︷︷ ︸
βk

+Mkvk

= Hkxk + βk + Mkvk,

where βk is known.
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The Prediction Step
I The prediction step is

x̌k = Fk−1x̂k−1 + uk−1,

P̌k = Fk−1P̂k−1FT
k−1 + Lk−1Qk−1LT

k−1,

where Fk−1, uk−1, and Lk−1 are evaluated at the best prior estimate of
the state, x̂k−1 (i.e., x̂k−1 replaces x̄k−1 in Fk−1, uk−1, and Lk−1).

I The computation of x̌k above is equivalent to

x̌k = Fk−1x̂k−1 + uk−1

= Fk−1x̂k−1 + (fk−1(x̂k−1,uk−1, 0)− Fk−1x̂k−1)

= fk−1(x̂k−1,uk−1, 0)

which is just the nonlinear discrete time process model evaluated at x̂k−1,
uk−1, and wk−1 = 0.
I As with the Kalman filter, we perform a prediction step using the expected

value of the disturbance, wk−1 = 0.
I It appears we are ignoring the disturbance, but we are not; if

wk−1 ∼ N (w̃k−1,Qk−1) then the prediction would be
x̌k = fk−1(x̂k−1, uk−1, w̃k−1).
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The Correction Step

I The correction is given by

Vk = HkP̌kHT
k + MkRkMT

k ,

Kk = P̌kHT
kV−1

k ,

x̂k = x̌k + Kk(yk − y̌k),

P̂k = (1−KkHk)P̌k(1−KkHk)T + KkMkRkMT
kKT

k

= P̌k −KkHkP̌k − P̌kHT
kKT

k + KkVkKT
k ,

where Hk and Mk are evaluated at x̌k (i.e., x̌k replaces x̄k in Hk and Mk).
I The predicted measurement y̌k is

y̌k = Hkx̌k + β̌k,

where Hk and β̌k are evaluated at x̌k.
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I The prediction measurement is equivalent to

y̌k = Hkx̌k + β̌k

= Hkx̌k + (gk(x̌k, 0)−Hkx̌k)

= gk(x̌k, 0),

the nonlinear discrete-time measurement model evaluated at x̌k, the a
priori state estimate.
I Again, we perform the correction step using the expected value of the noise,

vk = 0.
I It appears we are ignoring the noise, but we are not; if vk ∼ N (ṽk,Rk) then

the correction would be y̌k = gk(x̌k, ṽk).

I The correction is then also given by

x̂k = x̌k + Kk(yk − y̌k),

= x̌k + Kk (yk − gk(x̌k, 0)) .
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Summary of the Extended Kalman Filter

System: xk = fk−1(xk−1,uk−1,wk−1)

yk = gk(xk, vk)

wk ∼ N (0,Qk)

vk ∼ N (0,Rk)

Initialization: x̂0 = E [x0]

P̂0 = E
[
(x0 − x̂0) (x0 − x̂0)

T
]

Prediction: x̌k = fk−1(x̂k−1,uk−1, 0)

P̌k = Fk−1P̂k−1FT
k−1 + Lk−1Qk−1LT

k−1

Correction: Vk = HkP̌kHT
k + MkRkMT

k

Kk = P̌kHT
kV−1

k

x̂k = x̌k + Kk(yk − gk(x̌k, 0))

P̂k = (1−KkHk)P̌k(1−KkHk)T + KkMkRkMT
kKT

k

= P̌k −KkHkP̌k
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The Iterative EKF

I Recall that

Hk =
∂gk(xk, vk)

∂xk

∣∣∣∣
x̌k,0

,

Mk =
∂gk(xk, vk)

∂vk

∣∣∣∣
x̌k,0

,

which is to say that Hk and Mk are computed using x̌k after the prediction
step.

I Well, after the correction step we have a better estimate of the state,
namely x̂k.

I The idea behind the iterative EKF is to recompute Hk and Mk using a
better estimate of the state, then recompute Kk, and then finally
recompute x̂k and P̂k.

I This process is repeated until convergence.

26/29



Step-by-Step Details
1. Execute the prediction step normally, that is,

x̌k = fk−1(x̂k−1,uk−1, 0),

P̌k = Fk−1P̂k−1FT
k−1 + Lk−1Qk−1LT

k−1,

and set the linearization point to x̂k,lin = x̌k.
2. Compute

Hk =
∂gk(xk, vk)

∂xk

∣∣∣∣
x̂k,lin,0

,

Mk =
∂gk(xk, vk)

∂vk

∣∣∣∣
x̂k,lin,0

.

3. Compute

Kk = P̌kHT
k

(
HkP̌kHT

k + MkRkMT
k

)−1
,

x̂k = x̌k + Kk(yk − (g(x̂k,lin, 0) + Hk(x̌k − x̂k,lin))).

4. I If ‖x̂k − x̂k,lin‖2 ≥ ε set x̂k,lin = x̂k and go back to Step 2.
I If ‖x̂k − x̂k,lin‖2 < ε go to time step k + 1.

5. Compute

P̂k = (1−KkHk)P̌k(1−KkHk)T + KkMkRkMT
kKT

k
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Questions

Thank you for your attention.

Questions?

james.richard.forbes@mcgill.ca

Presentation created using LATEX and Beamer.
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