Adventures in Kalman Filtering — The "Prediction - Correction" World -

Prof. James Richard Forbes

McGill University, Department of Mechanical Engineering

October 25, 2021

- Sensors rarely measure states of interest directly. How do we "back out" states that are not measured directly?
- Within an IMU there is a rate gyro, an accelerometer, and often a magnetometer.
- The rate gyro measures $\underset{\rightarrow}{\omega^{b a}}$ (resolved in what frame?), not a set of Euler angles $\boldsymbol{\theta}^{b a}$, not a quaternion $\mathbf{q}^{b a}$, nor a DCM $\mathbf{C}_{b a}$, and not a set of Euler-angle rates $\dot{\boldsymbol{\theta}}^{b a}$, not a quaternion rate $\dot{\mathbf{q}}^{b a}$, nor a DCM rate $\dot{\mathbf{C}}_{b a} .{ }^{1}$
- The accelerometer measures $\underset{\rightarrow}{a}$ (resolved in what frame?), not $\underset{\rightarrow}{v}$, and not \xrightarrow{r}.
- A magnetometer measures $\underset{\rightarrow}{m}$ (resolved in what frame?), not $\boldsymbol{\theta}^{b a}$.
- There's no such thing as an "attitude sensor".
- Sensor data is imperfect; noise corrupts all measurements, and some measurements are (significantly) biased.
- Because noise and bias are random, we rely on concepts from probability theory to describe the properties of noise and bias that we are interested in filtering.

[^0]
The Gaussian Distribution

- A continuous random variable is said to have a normal or Gaussian distribution if the pdf associated with the random variable x is given by

$$
p\left(x ; \bar{x}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right) .
$$

- $p\left(x ; \bar{x}, \sigma^{2}\right)$ being a pdf means that

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right) \mathrm{d} x=1
$$

where the mean is

$$
\bar{x}=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right) \mathrm{d} x
$$

and the variance is

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-\bar{x})^{2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right) \mathrm{d} x
$$

Figure: Gaussian pdfs where $\bar{x}=2$ and σ takes on values of $1 / 3,2 / 3$, and 1 .

Shown in Figure 1 are three normal distributions. The mean of each is distribution is $\bar{x}=2$, while the standard deviation of each are $1 / 3,2 / 3$, and 1 , respectively.
A short-hand notation for indicating x is normally distributed is $x \sim \mathcal{N}\left(\bar{x}, \sigma^{2}\right)$.

The Multidimensional Case

- In the N-dimensional case, a continuous random column matrix $\mathbf{x} \in \mathbb{R}^{N}$ is said to have a normal or Gaussian distribution if the pdf associated with \mathbf{x} is given by

$$
p(\mathbf{x} ; \overline{\mathbf{x}}, \mathbf{Q})=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \mathbf{Q}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{\top} \mathbf{Q}^{-1}(\mathbf{x}-\overline{\mathbf{x}})\right)
$$

where $\overline{\mathbf{x}}$ is the mean and \mathbf{Q} is the covariance matrix.

- The covariance matrix is symmetric and positive definite (thus ensuring \mathbf{Q} is not singular, and thus \mathbf{Q}^{-1} exists).
- Being a pdf, it can be shown that

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \mathbf{Q}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{\top} \mathbf{Q}^{-1}(\mathbf{x}-\overline{\mathbf{x}})\right) \mathrm{d} \mathbf{x}=1
$$

the mean is

$$
\overline{\mathbf{x}}=\int_{-\infty}^{\infty} \mathbf{x} \frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \mathbf{Q}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{\top} \mathbf{Q}^{-1}(\mathbf{x}-\overline{\mathbf{x}})\right) \mathrm{d} \mathbf{x}
$$

and the covariance is

$$
\mathbf{Q}=\int_{-\infty}^{\infty}(\mathbf{x}-\overline{\mathbf{x}})(\mathbf{x}-\overline{\mathbf{x}})^{\top} \frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \mathbf{Q}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{\top} \mathbf{Q}^{-1}(\mathbf{x}-\overline{\mathbf{x}})\right) \mathrm{d} \mathbf{x}
$$

- A short-hand notation for indicating \mathbf{x} is normally distributed is $\mathbf{x} \sim \mathcal{N}(\overline{\mathbf{x}}, \mathbf{Q})$.

The Static Case

- Consider

$$
\left[\begin{array}{c}
\mathbf{x} \tag{1}\\
\mathbf{y}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
\boldsymbol{\mu}_{x} \\
\boldsymbol{\mu}_{y}
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\
\boldsymbol{\Sigma}_{x y}^{\top} & \boldsymbol{\Sigma}_{y y}
\end{array}\right]\right) .
$$

- Consider the affine estimator

$$
\hat{\mathbf{x}}=\mathbf{K y}+\ell
$$

where $\hat{\mathbf{x}}$ is the estimate of the state \mathbf{x} given the measurement \mathbf{y}.

- What form should \mathbf{K} and ℓ take?
- How can a priori information, such as that given in (1), be used to generate the estimated state $\hat{\mathbf{x}}$?
- Define the error $\mathbf{e}=\mathbf{x}-\hat{\mathbf{x}}$.
- An unbiased estimate is desired, meaning $E[\mathbf{e}]=\mathbf{0}$.
- Using this definition,

$$
\begin{aligned}
& \mathbf{0}=E[\mathbf{x}-\hat{\mathbf{x}}]=E[\mathbf{x}-\mathbf{K y}-\boldsymbol{\ell}]=E[\mathbf{x}]-E[\mathbf{K y}]-\boldsymbol{\ell}=\boldsymbol{\mu}_{x}-\mathbf{K} \boldsymbol{\mu}_{y}-\boldsymbol{\ell} \\
& \boldsymbol{\ell}=\boldsymbol{\mu}_{x}-\mathbf{K} \boldsymbol{\mu}_{y}
\end{aligned}
$$

- Thus, an unbiased estimator is of the form

$$
\begin{aligned}
\hat{\mathbf{x}} & =\mathbf{K y}+\boldsymbol{\ell} \\
& =\mathbf{K y}+\boldsymbol{\mu}_{x}-\mathbf{K} \boldsymbol{\mu}_{y} \\
& =\boldsymbol{\mu}_{x}+\mathbf{K}\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right) .
\end{aligned}
$$

- How should we pick \mathbf{K} to provide a best estimate?
- Consider

$$
\begin{aligned}
\mathbf{P} & =E\left[\mathbf{e}^{\mathrm{\top}}\right] \\
& =E\left[(\mathbf{x}-\hat{\mathbf{x}})(\mathbf{x}-\hat{\mathbf{x}})^{\mathrm{T}}\right] \\
& =E\left[\left(\mathbf{x}-\boldsymbol{\mu}_{x}-\mathbf{K}\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)\right)\left(\mathbf{x}-\boldsymbol{\mu}_{x}-\mathbf{K}\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)\right)^{\mathrm{T}}\right] \\
& =E\left[\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)^{\mathrm{T}}\right]-E\left[\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)^{\mathrm{T}}\right] \mathbf{K}^{\mathrm{\top}} \\
& -\mathbf{K} E\left[\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)\right]+\mathbf{K} E\left[\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)^{\mathrm{T}}\right] \mathbf{K}^{\top} \\
& =\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \mathbf{K}^{\mathrm{T}}-\mathbf{K} \boldsymbol{\Sigma}_{x y}^{\top}+\mathbf{K} \boldsymbol{\Sigma}_{y y} \mathbf{K}^{\boldsymbol{\top}}
\end{aligned}
$$

- Recall that $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{\boldsymbol{\top}}\right), \operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$ and that $\operatorname{tr}(\mathbf{C D})=\operatorname{tr}(\mathbf{D C})$ for all $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}, \mathbf{C} \in \mathbb{R}^{n \times m}, \mathbf{D} \in \mathbb{R}^{m \times n}$.
- Write $J(\mathbf{K})=\operatorname{tr}(\mathbf{P})$ as

$$
\begin{aligned}
J(\mathbf{K}) & =\operatorname{tr}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \mathbf{K}^{\boldsymbol{\top}}-\mathbf{K} \boldsymbol{\Sigma}_{x y}^{\boldsymbol{\top}}+\mathbf{K} \boldsymbol{\Sigma}_{y y} \mathbf{K}^{\boldsymbol{\top}}\right) \\
& =\operatorname{tr}\left(\boldsymbol{\Sigma}_{x x}\right)-\operatorname{tr}\left(\boldsymbol{\Sigma}_{x y} \mathbf{K}^{\boldsymbol{\top}}\right)-\operatorname{tr}\left(\mathbf{K} \boldsymbol{\Sigma}_{x y}^{\top}\right)+\operatorname{tr}\left(\mathbf{K} \boldsymbol{\Sigma}_{y y} \mathbf{K}^{\boldsymbol{\top}}\right) \\
& =\operatorname{tr}\left(\boldsymbol{\Sigma}_{x x}\right)-2 \operatorname{tr}\left(\boldsymbol{\Sigma}_{x y} \mathbf{K}^{\boldsymbol{\top}}\right)+\operatorname{tr}\left(\mathbf{K} \boldsymbol{\Sigma}_{y y} \mathbf{K}^{\boldsymbol{\top}}\right)
\end{aligned}
$$

- Consider a Taylor series expansion of a general function $f(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$, that is
$f(\overline{\mathbf{x}}+\delta \mathbf{x})=f(\overline{\mathbf{x}})+\left[\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\overline{\mathbf{x}}}\right] \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{\top}\left[\left.\frac{\partial}{\partial \mathbf{x}}\left(\frac{\partial f(\mathbf{x})^{\top}}{\partial \mathbf{x}}\right)\right|_{\mathbf{x}=\overline{\mathbf{x}}}\right] \delta \mathbf{x}+$ H.O.T.
where "H.O.T." means "higher-order terms", and

$$
\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\overline{\mathbf{x}}},\left.\quad \frac{\partial}{\partial \mathbf{x}}\left(\frac{\partial f(\mathbf{x})^{\top}}{\partial \mathbf{x}}\right)\right|_{\mathbf{x}=\overline{\mathbf{x}}}
$$

are the Jacobain and Hessian of $f(\cdot)$ evaluated at $\mathbf{x}=\overline{\mathbf{x}}$, respectfully.

- A necessary condition for $\overline{\mathbf{x}}$ to be an extremum (either a maximum or a minimum) is

$$
\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\overline{\mathbf{x}}}=\mathbf{0}
$$

- When $\mathbf{H}>0$ then $\overline{\mathbf{x}}$ corresponds to a minimum.
- Consider $\mathbf{K}=\overline{\mathbf{K}}+\delta \mathbf{K}$ and a Taylor series expansion of $J(\cdot)$. To this end,

$$
\begin{aligned}
J(\overline{\mathbf{K}}+\delta \mathbf{K}) & =\operatorname{tr}\left(\boldsymbol{\Sigma}_{x x}\right)-2 \operatorname{tr}\left(\boldsymbol{\Sigma}_{x y}(\overline{\mathbf{K}}+\delta \mathbf{K})^{\top}\right)+\operatorname{tr}\left((\overline{\mathbf{K}}+\delta \mathbf{K}) \boldsymbol{\Sigma}_{y y}(\overline{\mathbf{K}}+\delta \mathbf{K})^{\top}\right) \\
& =\operatorname{tr}\left(\boldsymbol{\Sigma}_{x x}\right)-2 \operatorname{tr}\left(\boldsymbol{\Sigma}_{x y} \overline{\mathbf{K}}^{\top}\right)-2 \operatorname{tr}\left(\boldsymbol{\Sigma}_{x y} \delta \mathbf{K}^{\top}\right) \\
& +\operatorname{tr}\left(\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y} \overline{\mathbf{K}}^{\boldsymbol{\top}}\right)+\operatorname{tr}\left(\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y} \delta \mathbf{K}^{\boldsymbol{\top}}\right)+\operatorname{tr}\left(\delta \mathbf{K} \boldsymbol{\Sigma}_{y y} \overline{\mathbf{K}}^{\boldsymbol{\top}}\right)+\operatorname{tr}\left(\delta \mathbf{K} \boldsymbol{\Sigma}_{y y} \delta \mathbf{K}^{\boldsymbol{\top}}\right) \\
& =\underbrace{\operatorname{tr}\left(\boldsymbol{\Sigma}_{x x}\right)-2 \operatorname{tr}\left(\boldsymbol{\Sigma}_{x y} \overline{\mathbf{K}}^{\top}\right)+\operatorname{tr}\left(\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y} \overline{\mathbf{K}}^{\boldsymbol{\top}}\right)}_{J(\overline{\mathbf{K}})} \\
& -2 \operatorname{tr}\left(\boldsymbol{\Sigma}_{x y} \delta \mathbf{K}^{\boldsymbol{\top}}\right)+2 \operatorname{tr}\left(\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y} \delta \mathbf{K}^{\boldsymbol{\top}}\right)+\operatorname{tr}\left(\delta \mathbf{K} \boldsymbol{\Sigma}_{y y} \delta \mathbf{K}^{\boldsymbol{\top}}\right) \\
& =J(\overline{\mathbf{K}})-2 \operatorname{tr}\left(\boldsymbol{\Sigma}_{x y} \delta \mathbf{K}^{\top}-\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y} \delta \mathbf{K}^{\boldsymbol{\top}}\right)+\operatorname{tr}\left(\delta \mathbf{K} \boldsymbol{\Sigma}_{y y} \delta \mathbf{K}^{\boldsymbol{\top}}\right) \\
& =J(\overline{\mathbf{K}})-2 \operatorname{tr}\left(\left(\boldsymbol{\Sigma}_{x y}-\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y}\right) \delta \mathbf{K}^{\boldsymbol{\top}}\right)+\operatorname{tr}\left(\delta \mathbf{K} \boldsymbol{\Sigma}_{y y} \delta \mathbf{K}^{\top}\right)
\end{aligned}
$$

- Thus,

$$
\left.\frac{\partial J(\mathbf{K})}{\partial \mathbf{K}}\right|_{\mathbf{K}=\overline{\mathbf{K}}}=\boldsymbol{\Sigma}_{x y}-\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y},\left.\quad \frac{\partial}{\partial \mathbf{K}}\left(\frac{\partial J(\mathbf{K})^{\top}}{\partial \mathbf{K}}\right)\right|_{\mathbf{K}=\overline{\mathbf{K}}}=\boldsymbol{\Sigma}_{y y}
$$

- Note, from the above derivation it follows that

$$
\frac{\partial \operatorname{tr}\left(\mathbf{A} \mathbf{X}^{\boldsymbol{\top}}\right)}{\partial \mathbf{X}}=\mathbf{A}, \quad \frac{\partial \operatorname{tr}\left(\mathbf{X} \mathbf{A} \mathbf{X}^{\boldsymbol{\top}}\right)}{\partial \mathbf{X}}=2 \mathbf{X A} .
$$

Don't memorize the above derivative definitions ... understand the fundamentals, the bigger picture ...that being, perturbing the independent variable, a Taylor series expansion, etc.

- For $\overline{\mathbf{K}}$ to be an extremum,

$$
\begin{aligned}
\left.\frac{\partial J(\mathbf{K})}{\partial \mathbf{K}}\right|_{\mathbf{K}=\overline{\mathbf{K}}} & =\mathbf{0} \\
\boldsymbol{\Sigma}_{x y}-\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y} & =\mathbf{0} \\
\overline{\mathbf{K}} \boldsymbol{\Sigma}_{y y} & =\boldsymbol{\Sigma}_{x y} \\
\overline{\mathbf{K}} & =\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}
\end{aligned}
$$

- The Hessian is $\boldsymbol{\Sigma}_{y y}>0$. Thus, $\overline{\mathbf{K}}=\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}$ corresponds to a minimum of $J(\mathbf{K})=\operatorname{tr}(\mathbf{P})$.
- In fact, because $J(\cdot)$ is convex, this minimum is a global minimum, and thus an unique minimum.
- Thus,

$$
\begin{aligned}
\hat{\mathbf{x}} & =\boldsymbol{\mu}_{x}+\overline{\mathbf{K}}\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right) \\
& =\boldsymbol{\mu}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)
\end{aligned}
$$

provides a best, unbiased, estimate of \mathbf{x} given the measurement (or realization) \mathbf{y} and the a priori information given in (1).

- Often we drop the "bar" and just write $\mathbf{K}=\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}$.

The Dynamic Case

- Consider a discrete-time system described by linear process (a.k.a. motion) and measurement (a.k.a. observation) models,

$$
\begin{array}{lr}
\mathbf{x}_{k}=\mathbf{F}_{k-1} \mathbf{x}_{k-1}+\mathbf{G}_{k-1} \mathbf{u}_{k-1}+\mathbf{L}_{k-1} \mathbf{w}_{k-1}, & \mathbf{w}_{k} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{k}\right) \\
\mathbf{y}_{k}=\mathbf{H}_{k} \mathbf{x}_{k}+\mathbf{M}_{k} \mathbf{v}_{k}, & \mathbf{v}_{k} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right)
\end{array}
$$

- Let $\hat{\mathbf{x}}_{k}$ denote a state estimate. Can $\hat{\mathbf{x}}_{k}$ be found

1. in an unbiased manner, and
2. in an optimal manner?

- What does the word "unbiased" mean? It means

$$
E\left[\hat{\mathbf{e}}_{k}\right]=\mathbf{0}, \quad \forall k=0, \ldots, K
$$

where $\hat{\mathbf{e}}_{k}=\mathbf{x}_{k}-\hat{\mathbf{x}}_{k}$.

- What does the word "optimal" mean? It means an objective function is extremized (either minimized or maximized).
- BLUE - "best, linear, unbiased, estimator".
- Consider the predict-correct estimator structure,

$$
\begin{aligned}
\check{\mathbf{x}}_{k} & =\mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}+\mathbf{G}_{k-1} \mathbf{u}_{k-1}, \\
\hat{\mathbf{x}}_{k} & =\check{\mathbf{x}}_{k}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\check{\mathbf{y}}_{k}\right)
\end{aligned}
$$

where

- $\check{\mathbf{x}}_{k}$ is the a priori, or predicted, state estimate,
- $\check{\mathbf{y}}_{k}=\mathbf{H}_{k} \check{\mathbf{x}}_{k}$ is the predicted measurement, and
- $\hat{\mathbf{x}}_{k}$ is the a posteriori, or corrected, state estimate.
- Define
- $\check{\mathbf{e}}_{k}=\mathbf{x}_{k}-\check{\mathbf{x}}_{k}$, the a priori, or predicted, error,
- $\check{\mathbf{P}}_{k}=E\left[\check{\mathbf{e}}_{k} \check{\mathbf{e}}_{k}^{\top}\right]$, the a priori, or predicted, covariance,
- $\hat{\mathbf{e}}_{k}=\mathbf{x}_{k}-\hat{\mathbf{x}}_{k}$, the a posteriori, or corrected, error,
- $\hat{\mathbf{P}}_{k}=E\left[\hat{\mathbf{e}}_{k} \hat{\mathbf{e}}_{k}^{\top}\right]$, the a posteriori, or corrected, covariance,
- $\check{\rho}_{k}=\mathbf{y}_{k}-\check{\mathbf{y}}_{k}$ the innovation, or the residual,
- $\check{\mathbf{P}}_{k}^{\mathbf{y}_{k} \mathbf{y}_{k}}=E\left[\check{\boldsymbol{\rho}}_{k} \check{\boldsymbol{\rho}}_{k}^{\top}\right]$, the covariance associated with the innovation, and
$-\check{\mathbf{P}}_{k}^{{ }_{x} \mathbf{y}_{k}}=E\left[\check{\mathbf{e}}_{k} \check{\boldsymbol{\rho}}_{k}^{\top}\right]$, the cross covariance.
- Given $\hat{\mathbf{x}}_{k-1}, \hat{\mathbf{P}}_{k-1}$, and \mathbf{u}_{k-1}, the predicted state is

$$
\check{\mathbf{x}}_{k}=\mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}+\mathbf{G}_{k-1} \mathbf{u}_{k-1}
$$

- The predicted covariance is

$$
\begin{aligned}
\check{\mathbf{P}}_{k} & =E\left[\check{\mathbf{e}}_{k} \check{\mathbf{e}}_{k}^{\top}\right] \\
& =E\left[\left(\mathbf{x}_{k}-\check{\mathbf{x}}_{k}\right) \check{\mathbf{e}}_{k}^{\top}\right] \\
& =E\left[\left(\mathbf{F}_{k-1} \mathbf{x}_{k-1}+\mathbf{G}_{k-1} \mathbf{u}_{k-1}+\mathbf{L}_{k-1} \mathbf{w}_{k-1}-\mathbf{F}_{k-1} \check{\mathbf{x}}_{k}-\mathbf{G}_{k-1} \mathbf{u}_{k-1}\right) \check{\mathbf{e}}_{k}^{\top}\right] \\
& =E\left[\left(\mathbf{F}_{k-1} \hat{\mathbf{e}}_{k-1}+\mathbf{L}_{k-1} \mathbf{w}_{k-1}\right)\left(\hat{\mathbf{e}}_{k-1}^{\top} \mathbf{F}_{k-1}^{\top}+\mathbf{w}_{k-1}^{\top} \mathbf{L}_{k-1}^{\top}\right)\right] \\
& =\mathbf{F}_{k-1} E\left[\hat{\mathbf{e}}_{k-1} \hat{\mathbf{e}}_{k-1}^{\top}\right] \mathbf{F}_{k-1}^{\top}+\mathbf{F}_{k-1} E\left[\hat{\mathbf{e}}_{k-1} \mathbf{w}_{k-1}^{\top}\right] \mathbf{L}_{k-1}^{\top} \\
& +\mathbf{L}_{k-1} E\left[\mathbf{w}_{k-1} \hat{\mathbf{e}}_{k-1}^{\top}\right] \mathbf{F}_{k-1}^{\top}+\mathbf{L}_{k-1} E\left[\mathbf{w}_{k-1} \mathbf{w}_{k-1}^{\top}\right] \mathbf{L}_{k-1}^{\top} \\
& =\mathbf{F}_{k-1} \hat{\mathbf{P}}_{k-1} \mathbf{F}_{k-1}^{\top}+\mathbf{L}_{k-1} \mathbf{Q}_{k} \mathbf{L}_{k-1}^{\top}
\end{aligned}
$$

where $E\left[\mathbf{w}_{k-1} \hat{\mathbf{e}}_{k-1}^{\top}\right]=\mathbf{0}, \hat{\mathbf{P}}_{k-1}=E\left[\hat{\mathbf{e}}_{k-1} \hat{\mathbf{e}}_{k-1}^{\top}\right]$, and $\mathbf{Q}_{k-1}=E\left[\mathbf{w}_{k-1} \mathbf{w}_{k-1}^{\top}\right]$.

- Given the prediction, $\check{\mathbf{x}}_{k}$, a gain matrix $\mathbf{K} \in \mathbb{R}^{n_{x} \times n_{y}}$, and the measurement \mathbf{y}_{k}, is the correction $\hat{\mathbf{x}}_{k}=\check{\mathbf{x}}_{k}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\check{\mathbf{y}}_{k}\right)$ unbiased?
- Unbiased means $E\left[\hat{\mathbf{e}}_{k}\right]=\mathbf{0}$. Using this definition,

$$
\begin{align*}
E\left[\hat{\mathbf{e}}_{k}\right] & =E\left[\mathbf{x}_{k}-\hat{\mathbf{x}}_{k}\right]=E\left[\mathbf{x}_{k}-\check{\mathbf{x}}_{k}-\mathbf{K}_{k}\left(\mathbf{y}_{k}-\check{\mathbf{y}}_{k}\right)\right] \\
& =E\left[\mathbf{x}_{k}-\check{\mathbf{x}}_{k}\right]-\mathbf{K}_{k} E\left[\mathbf{H}_{k} \mathbf{x}_{k}+\mathbf{M}_{k} \mathbf{v}_{k}-\mathbf{H}_{k} \mathbf{x}_{k}\right] \\
& =E\left[\mathbf{x}_{k}-\check{\mathbf{x}}_{k}\right]-\mathbf{K}_{k} \mathbf{H}_{k} E\left[\mathbf{x}_{k}-\check{\mathbf{x}}_{k}\right]-\mathbf{K}_{k} \mathbf{M}_{k} E\left[\mathbf{v}_{k}\right]=\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) E\left[\check{\mathbf{e}}_{k}\right] . \tag{2}
\end{align*}
$$

- Next, note that

$$
\begin{align*}
E\left[\check{\mathbf{e}}_{k}\right] & =E\left[\mathbf{x}_{k}-\check{\mathbf{x}}_{k}\right] \\
& =E\left[\mathbf{F}_{k-1} \mathbf{x}_{k-1}+\mathbf{G}_{k-1} \mathbf{u}_{k-1}+\mathbf{L}_{k-1} \mathbf{w}_{k-1}-\mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}-\mathbf{G}_{k-1} \mathbf{u}_{k-1}\right] \\
& =\mathbf{F}_{k-1} E\left[\mathbf{x}_{k-1}-\hat{\mathbf{x}}_{k-1}\right]+\mathbf{L}_{k-1} E\left[\mathbf{w}_{k-1}\right]=\mathbf{F}_{k-1} E\left[\hat{\mathbf{e}}_{k-1}\right] . \tag{3}
\end{align*}
$$

- Provided $\hat{\mathbf{e}}_{0} \sim \mathcal{N}\left(\mathbf{0}, \hat{\mathbf{P}}_{0}\right),{ }^{2}$
- then $E\left[\check{\mathbf{e}}_{1}\right]=\mathbf{0}$ from (3),
- then $E\left[\hat{\mathbf{e}}_{1}\right]=\mathbf{0}$ from (2),
- then $E\left[\check{\mathbf{e}}_{2}\right]=\mathbf{0}$ from (3),
- then $E\left[\hat{\mathbf{e}}_{2}\right]=\mathbf{0}$ from (2),
- then $E\left[\hat{\mathbf{e}}_{k}\right]=\mathbf{0}$ from (2), \ldots
\rightarrow In turn, the estimate $\hat{\mathbf{x}}_{k}$ is unbiased.
${ }^{2} \hat{\mathbf{e}}_{0} \sim \mathcal{N}\left(\mathbf{0}, \hat{\mathbf{P}}_{0}\right)$ does not mean that $\hat{\mathbf{e}}_{0}=\mathbf{0}$; it means the pdf associated with $\hat{\mathbf{e}}_{0}$ has zero mean and covariance $\hat{\mathbf{P}}_{0}$.

An Optimization Problem

- Consider the cost function

$$
J_{k}\left(\mathbf{K}_{k}\right)=\operatorname{tr}\left(\hat{\mathbf{P}}_{k}\right),
$$

where $\hat{\mathbf{P}}_{k}=E\left[\hat{\mathbf{e}}_{k} \hat{\mathbf{e}}_{k}^{\top}\right], \hat{\mathbf{e}}_{k}=\mathbf{x}_{k}-\hat{\mathbf{x}}_{k}$.
Q. Why minimize this cost function as a function of \mathbf{K}_{k} ?
A. Doing so minimizes the error covariance, which in turn means minimizing the uncertainty in the state-estimation error.

- First, what is $\hat{\mathbf{P}}_{k}=E\left[\hat{\mathbf{e}}_{k} \hat{\mathbf{e}}_{k}^{\top}\right]$? Using

$$
\begin{aligned}
\hat{\mathbf{e}}_{k} & =\mathbf{x}_{k}-\hat{\mathbf{x}}_{k} \\
& =\mathbf{x}_{k}-\check{\mathbf{x}}_{k}-\mathbf{K}_{k}\left(\mathbf{y}_{k}-\check{\mathbf{y}}_{k}\right) \\
& =\check{\mathbf{e}}_{k}-\mathbf{K}_{k} \mathbf{H}_{k}\left(\mathbf{x}_{k}-\check{\mathbf{x}}_{k}\right)-\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{v}_{k} \\
& =\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{e}}_{k}-\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{v}_{k} \quad \ldots
\end{aligned}
$$

- ...it follows that

$$
\begin{aligned}
\hat{\mathbf{P}}_{k} & =E\left[\hat{\mathbf{e}}_{k} \hat{\mathbf{e}}_{k}^{\top}\right] \\
& =E\left[\left(\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{e}}_{k}-\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{v}_{k}\right)\left(\check{\mathbf{e}}_{k}^{\top}\left(\mathbf{1}-\mathbf{H}_{k}^{\top} \mathbf{K}_{k}^{\top}\right)-\mathbf{v}_{k}^{\top} \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top}\right)\right] \\
& =E\left[\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{e}}_{k} \check{\mathbf{e}}_{k}^{\top}\left(\mathbf{1}-\mathbf{H}_{k}^{\top} \mathbf{K}_{k}^{\top}\right)-\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{e}}_{k} \mathbf{v}_{k}^{\top} \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top}\right. \\
& \left.-\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{v}_{k} \check{\mathbf{e}}_{k}^{\top}\left(\mathbf{1}-\mathbf{H}_{k}^{\top} \mathbf{K}_{k}^{\top}\right)+\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{\top} \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top}\right] \\
& =\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) E\left[\check{\mathbf{e}}_{k} \check{\mathbf{e}}_{k}^{\top}\right]\left(\mathbf{1}-\mathbf{H}_{k}^{\top} \mathbf{K}_{k}^{\top}\right)-\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) E\left[\check{\mathbf{e}}_{k} \mathbf{v}_{k}^{\top}\right] \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top} \\
& -\mathbf{K}_{k} \mathbf{M}_{k} E\left[\mathbf{v}_{k} \check{\mathbf{e}}_{k}^{\top}\right]\left(\mathbf{1}-\mathbf{H}_{k}^{\top} \mathbf{K}_{k}^{\top}\right)+\mathbf{K}_{k} \mathbf{M}_{k} E\left[\mathbf{v}_{k} \mathbf{v}_{k}^{\top}\right] \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top} \\
& =\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{P}}_{k}\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right)^{\top}+\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top},
\end{aligned}
$$

where $E\left[\check{\mathbf{e}}_{k} \mathbf{v}_{k}^{\top}\right]=\mathbf{0}$.

- Using a slightly different form of $\hat{\mathbf{P}}_{k}$,

$$
\hat{\mathbf{P}}_{k}=\check{\mathbf{P}}_{k}-\check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top} \mathbf{K}_{k}^{\top}-\mathbf{K}_{k} \mathbf{H}_{k} \check{\mathbf{P}}_{k}+\mathbf{K}_{k}\left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+\mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top}\right) \mathbf{K}_{k}^{\top},
$$

then computing $\frac{\partial J_{k}(\mathbf{K})}{\partial \mathbf{K}}$ and setting the result to zero gives

$$
\frac{\partial J_{k}(\mathbf{K})}{\partial \mathbf{K}}=-2 \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+2 \mathbf{K}_{k}\left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+\mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top}\right)=\mathbf{0} .
$$

- Rearranging, and solving for \mathbf{K}_{k}, results in

$$
\begin{align*}
& \mathbf{K}_{k}\left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+\mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top}\right)=\check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}, \\
& \mathbf{K}_{k}=\check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}\left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+\mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top}\right)^{-1} \tag{4}
\end{align*}
$$

- \mathbf{K}_{k} is called the Kalman gain.
- The inverse in (4) always exists. Why?

Summary of the Kalman Filter

System:

Initialization:

Correction:

$$
\begin{aligned}
\mathbf{x}_{k} & =\mathbf{F}_{k-1} \mathbf{x}_{k-1}+\mathbf{G}_{k-1} \mathbf{u}_{k-1}+\mathbf{L}_{k-1} \mathbf{w}_{k-1} \\
\mathbf{y}_{k} & =\mathbf{H}_{k} \mathbf{x}_{k}+\mathbf{M}_{k} \mathbf{v}_{k} \\
\mathbf{w}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{k}\right) \\
\mathbf{v}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right) \\
\hat{\mathbf{x}}_{0} & =E\left[\mathbf{x}_{0}\right] \\
\hat{\mathbf{P}}_{0} & =E\left[\left(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0}\right)\left(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0}\right)^{\top}\right] \\
\check{\mathbf{x}}_{k} & =\mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}+\mathbf{G}_{k-1} \mathbf{u}_{k-1} \\
\check{\mathbf{P}}_{k} & =\mathbf{F}_{k-1} \mathbf{P}_{k-1} \mathbf{F}_{k-1}^{\top}+\mathbf{L}_{k-1} \mathbf{Q}_{k-1} \mathbf{L}_{k-1}^{\top} \\
\mathbf{V}_{k} & =\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+\mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top} \\
\mathbf{K}_{k} & =\check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top} \mathbf{V}_{k}^{-1} \\
\grave{\mathbf{x}}_{k} & =\check{\mathbf{x}}_{k}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\check{\mathbf{y}}_{k}\right) \\
\hat{\mathbf{P}}_{k} & =\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{P}}_{k}\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right)^{\top}+\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top} \\
& =\check{\mathbf{P}}_{k}-\mathbf{K}_{k} \mathbf{H}_{k} \check{\mathbf{P}}_{k}
\end{aligned}
$$

Prediction:

Derivation of the Extended Kalman Filter (EKF)

- Consider a discrete-time system described by nonlinear process and measurement (observation) models,

$$
\begin{aligned}
\mathbf{x}_{k} & =\mathbf{f}_{k-1}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}\right), & \mathbf{w}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{k}\right), \\
\mathbf{y}_{k} & =\mathbf{g}_{k}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right), & \mathbf{v}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right) .
\end{aligned}
$$

- To derive the EKF the nonlinear discrete-time system is linearized.
- Perform a Taylor series expansion in $\mathbf{x}_{k}, \mathbf{w}_{k}$, and \mathbf{v}_{k} about some nominal $\overline{\mathbf{x}}_{k}, \overline{\mathbf{w}}_{k}, \overline{\mathbf{v}}_{k}$ such that

$$
\begin{aligned}
\mathbf{x}_{k} & =\overline{\mathbf{x}}_{k}+\delta \mathbf{x}_{k} \\
\mathbf{w}_{k} & =\overline{\mathbf{w}}_{k}+\delta \mathbf{w}_{k} \\
\mathbf{v}_{k} & =\overline{\mathbf{v}}_{k}+\delta \mathbf{v}_{k}
\end{aligned}
$$

where $\delta \mathbf{x}_{k}, \delta \mathbf{w}_{k}$, and $\delta \mathbf{v}_{k}$ are perturbations.

- To be consistent with the assumed disturbance and noise (i.e., the expected value of the disturbance and noise), $\overline{\mathbf{w}}_{k}$ and $\overline{\mathbf{v}}_{k}$ are both zero, that is, $\overline{\mathbf{w}}_{k}=\mathbf{0}$ and $\overline{\mathbf{v}}_{k}=\mathbf{0}$.
- Perturbing the process model,
$\mathbf{x}_{k}=\overline{\mathbf{x}}_{k}+\delta \mathbf{x}_{k}=\mathbf{f}_{k-1}\left(\overline{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \overline{\mathbf{w}}_{k-1}\right)+\mathbf{F}_{k-1} \delta \mathbf{x}_{k-1}+\mathbf{L}_{k-1} \delta \mathbf{w}_{k-1}+$ H.O.T., where

$$
\begin{aligned}
& \mathbf{F}_{k-1}=\left.\frac{\partial \mathbf{f}_{k-1}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}\right)}{\partial \mathbf{x}_{k-1}}\right|_{\overline{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \overline{\mathbf{w}}_{k-1}} \\
& \mathbf{L}_{k-1}=\left.\frac{\partial \mathbf{f}_{k-1}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}\right)}{\partial \mathbf{w}_{k-1}}\right|_{\overline{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \overline{\mathbf{w}}_{k-1}}
\end{aligned}
$$

- Perturbing the measurement model,

$$
\mathbf{y}_{k}=\overline{\mathbf{y}}_{k}+\delta \mathbf{y}_{k}=\mathbf{g}_{k}\left(\overline{\mathbf{x}}_{k}, \overline{\mathbf{v}}_{k}\right)+\mathbf{H}_{k} \delta \mathbf{x}_{k}+\mathbf{M}_{k} \delta \mathbf{v}_{k}+\text { H.O.T. }
$$

where

$$
\begin{aligned}
\mathbf{H}_{k} & =\left.\frac{\partial \mathbf{g}_{k}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right)}{\partial \mathbf{x}_{k}}\right|_{\overline{\mathbf{x}}_{k}, \overline{\mathbf{v}}_{k}} \\
\mathbf{M}_{k} & =\left.\frac{\partial \mathbf{g}_{k}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right)}{\partial \mathbf{v}_{k}}\right|_{\overline{\mathbf{x}}_{k}, \overline{\mathbf{v}}_{k}}
\end{aligned}
$$

- Note \mathbf{L}_{k} and \mathbf{M}_{k} must be full column and row rank, respectively.
- Using $\mathbf{x}_{k}=\overline{\mathbf{x}}_{k}+\delta \mathbf{x}_{k}$ and $\mathbf{w}_{k}=\overline{\mathbf{w}}_{k}+\delta \mathbf{w}_{k}=\mathbf{0}+\delta \mathbf{w}_{k}$, and dropping H.O.T., rewrite the linearized process model as

$$
\begin{aligned}
\mathbf{x}_{k} & =\mathbf{f}_{k-1}\left(\overline{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right)+\mathbf{F}_{k-1} \delta \mathbf{x}_{k-1}+\mathbf{L}_{k-1} \delta \mathbf{w}_{k-1} \\
& =\mathbf{f}_{k-1}\left(\overline{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right)+\mathbf{F}_{k-1}\left(\mathbf{x}_{k-1}-\overline{\mathbf{x}}_{k-1}\right)+\mathbf{L}_{k-1} \mathbf{w}_{k-1} \\
& =\mathbf{F}_{k-1} \mathbf{x}_{k-1}+\underbrace{\mathbf{f}_{k-1}\left(\overline{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right)-\mathbf{F}_{k-1} \overline{\mathbf{x}}_{k-1}}_{\boldsymbol{u}_{k-1}}+\mathbf{L}_{k-1} \mathbf{w}_{k-1} \\
& =\mathbf{F}_{k-1} \mathbf{x}_{k-1}+\boldsymbol{u}_{k-1}+\mathbf{L}_{k-1} \mathbf{w}_{k-1},
\end{aligned}
$$

where \boldsymbol{u}_{k-1} is known.

- In a similar fashion, using $\mathbf{x}_{k}=\overline{\mathbf{x}}_{k}+\delta \mathbf{x}_{k}$ and $\mathbf{v}_{k}=\overline{\mathbf{v}}_{k}+\delta \mathbf{v}_{k}=\mathbf{0}+\delta \mathbf{v}_{k}$, and dropping H.O.T., rewrite the linearized measurement model as

$$
\begin{aligned}
\mathbf{y}_{k} & =\mathbf{g}_{k}\left(\overline{\mathbf{x}}_{k}, \mathbf{0}\right)+\mathbf{H}_{k} \delta \mathbf{x}_{k}+\mathbf{M}_{k} \delta \mathbf{v}_{k} \\
& =\mathbf{g}_{k}\left(\overline{\mathbf{x}}_{k}, \mathbf{0}\right)+\mathbf{H}_{k}\left(\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right)+\mathbf{M}_{k} \mathbf{v}_{k} \\
& =\mathbf{H}_{k} \mathbf{x}_{k}+\underbrace{\mathbf{g}_{k}\left(\overline{\mathbf{x}}_{k}, \mathbf{0}\right)-\mathbf{H}_{k} \overline{\mathbf{x}}_{k}}_{\boldsymbol{\beta}_{k}}+\mathbf{M}_{k} \mathbf{v}_{k} \\
& =\mathbf{H}_{k} \mathbf{x}_{k}+\boldsymbol{\beta}_{k}+\mathbf{M}_{k} \mathbf{v}_{k}
\end{aligned}
$$

where $\boldsymbol{\beta}_{k}$ is known.

The Prediction Step

- The prediction step is

$$
\begin{aligned}
\check{\mathbf{x}}_{k} & =\mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}+\boldsymbol{u}_{k-1}, \\
\check{\mathbf{P}}_{k} & =\mathbf{F}_{k-1} \hat{\mathbf{P}}_{k-1} \mathbf{F}_{k-1}^{\top}+\mathbf{L}_{k-1} \mathbf{Q}_{k-1} \mathbf{L}_{k-1}^{\top},
\end{aligned}
$$

where $\mathbf{F}_{k-1}, \boldsymbol{u}_{k-1}$, and \mathbf{L}_{k-1} are evaluated at the best prior estimate of the state, $\hat{\mathbf{x}}_{k-1}$ (i.e., $\hat{\mathbf{x}}_{k-1}$ replaces $\overline{\mathbf{x}}_{k-1}$ in $\mathbf{F}_{k-1}, \boldsymbol{u}_{k-1}$, and \mathbf{L}_{k-1}).

- The computation of $\check{\mathbf{x}}_{k}$ above is equivalent to

$$
\begin{aligned}
\check{\mathbf{x}}_{k} & =\mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}+\boldsymbol{u}_{k-1} \\
& =\mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}+\left(\mathbf{f}_{k-1}\left(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right)-\mathbf{F}_{k-1} \hat{\mathbf{x}}_{k-1}\right) \\
& =\mathbf{f}_{k-1}\left(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right)
\end{aligned}
$$

which is just the nonlinear discrete time process model evaluated at $\hat{\mathbf{x}}_{k-1}$, \mathbf{u}_{k-1}, and $\mathbf{w}_{k-1}=\mathbf{0}$.

- As with the Kalman filter, we perform a prediction step using the expected value of the disturbance, $\mathbf{w}_{k-1}=\mathbf{0}$.
- It appears we are ignoring the disturbance, but we are not; if $\mathbf{w}_{k-1} \sim \mathcal{N}\left(\tilde{\mathbf{w}}_{k-1}, \mathbf{Q}_{k-1}\right)$ then the prediction would be $\check{\mathbf{x}}_{k}=\mathbf{f}_{k-1}\left(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \tilde{\mathbf{w}}_{k-1}\right)$.

The Correction Step

- The correction is given by

$$
\begin{aligned}
\mathbf{V}_{k} & =\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+\mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top}, \\
\mathbf{K}_{k} & =\check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top} \mathbf{V}_{k}^{-1}, \\
\hat{\mathbf{x}}_{k} & =\check{\mathbf{x}}_{k}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\check{\mathbf{y}}_{k}\right), \\
\hat{\mathbf{P}}_{k} & =\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{P}}_{k}\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right)^{\top}+\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top} \\
& =\check{\mathbf{P}}_{k}-\mathbf{K}_{k} \mathbf{H}_{k} \check{\mathbf{P}}_{k}-\check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top} \mathbf{K}_{k}^{\top}+\mathbf{K}_{k} \mathbf{V}_{k} \mathbf{K}_{k}^{\top},
\end{aligned}
$$

where \mathbf{H}_{k} and \mathbf{M}_{k} are evaluated at $\check{\mathbf{x}}_{k}$ (i.e., $\check{\mathbf{x}}_{k}$ replaces $\overline{\mathbf{x}}_{k}$ in \mathbf{H}_{k} and \mathbf{M}_{k}).

- The predicted measurement $\check{\mathbf{y}}_{k}$ is

$$
\check{\mathbf{y}}_{k}=\mathbf{H}_{k} \check{\mathbf{x}}_{k}+\check{\boldsymbol{\beta}}_{k},
$$

where \mathbf{H}_{k} and $\check{\boldsymbol{\beta}}_{k}$ are evaluated at $\check{\mathbf{x}}_{k}$.

- The prediction measurement is equivalent to

$$
\begin{aligned}
\check{\mathbf{y}}_{k} & =\mathbf{H}_{k} \check{\mathbf{x}}_{k}+\check{\boldsymbol{\beta}}_{k} \\
& =\mathbf{H}_{k} \check{\mathbf{x}}_{k}+\left(\mathbf{g}_{k}\left(\check{\mathbf{x}}_{k}, \mathbf{0}\right)-\mathbf{H}_{k} \check{\mathbf{x}}_{k}\right) \\
& =\mathbf{g}_{k}\left(\check{\mathbf{x}}_{k}, \mathbf{0}\right),
\end{aligned}
$$

the nonlinear discrete-time measurement model evaluated at $\check{\mathbf{x}}_{k}$, the a priori state estimate.

- Again, we perform the correction step using the expected value of the noise, $\mathbf{v}_{k}=\mathbf{0}$.
- It appears we are ignoring the noise, but we are not; if $\mathbf{v}_{k} \sim \mathcal{N}\left(\tilde{\mathbf{v}}_{k}, \mathbf{R}_{k}\right)$ then the correction would be $\check{\mathbf{y}}_{k}=\mathbf{g}_{k}\left(\check{\mathbf{x}}_{k}, \tilde{\mathbf{v}}_{k}\right)$.
- The correction is then also given by

$$
\begin{aligned}
\hat{\mathbf{x}}_{k} & =\check{\mathbf{x}}_{k}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\check{\mathbf{y}}_{k}\right) \\
& =\check{\mathbf{x}}_{k}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\mathbf{g}_{k}\left(\check{\mathbf{x}}_{k}, \mathbf{0}\right)\right)
\end{aligned}
$$

Summary of the Extended Kalman Filter

System:

Initialization:

Prediction:

Correction:

$$
\begin{aligned}
\mathbf{x}_{k} & =\mathbf{f}_{k-1}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}\right) \\
\mathbf{y}_{k} & =\mathbf{g}_{k}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right) \\
\mathbf{w}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{k}\right) \\
\mathbf{v}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right) \\
\hat{\mathbf{x}}_{0} & =E\left[\mathbf{x}_{0}\right] \\
\hat{\mathbf{P}}_{0} & =E\left[\left(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0}\right)\left(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0}\right)^{\top}\right] \\
\check{\mathbf{x}}_{k} & =\mathbf{f}_{k-1}\left(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right) \\
\check{\mathbf{P}}_{k} & =\mathbf{F}_{k-1} \mathbf{P}_{k-1} \mathbf{F}_{k-1}^{\top}+\mathbf{L}_{k-1} \mathbf{Q}_{k-1} \mathbf{L}_{k-1}^{\top} \\
\mathbf{V}_{k} & =\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+\mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top} \\
\mathbf{K}_{k} & =\check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top} \mathbf{V}_{k}^{-1} \\
\hat{\mathbf{x}}_{k} & =\check{\mathbf{x}}_{k}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\mathbf{g}_{k}\left(\check{\mathbf{x}}_{k}, \mathbf{0}\right)\right) \\
\hat{\mathbf{P}}_{k} & =\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{P}}_{k}\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right)^{\top}+\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top} \\
& =\check{\mathbf{P}}_{k}-\mathbf{K}_{k} \mathbf{H}_{k} \check{\mathbf{P}}_{k}
\end{aligned}
$$

The Iterative EKF

- Recall that

$$
\begin{aligned}
& \mathbf{H}_{k}=\left.\frac{\partial \mathbf{g}_{k}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right)}{\partial \mathbf{x}_{k}}\right|_{\check{\mathbf{x}}_{k}, \mathbf{0}} \\
& \mathbf{M}_{k}=\left.\frac{\partial \mathbf{g}_{k}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right)}{\partial \mathbf{v}_{k}}\right|_{\check{\mathbf{x}}_{k}, \mathbf{0}}
\end{aligned}
$$

which is to say that \mathbf{H}_{k} and \mathbf{M}_{k} are computed using $\check{\mathbf{x}}_{k}$ after the prediction step.

- Well, after the correction step we have a better estimate of the state, namely $\hat{\mathbf{x}}_{k}$.
- The idea behind the iterative EKF is to recompute \mathbf{H}_{k} and \mathbf{M}_{k} using a better estimate of the state, then recompute \mathbf{K}_{k}, and then finally recompute $\hat{\mathbf{x}}_{k}$ and $\hat{\mathbf{P}}_{k}$.
- This process is repeated until convergence.

Step-by-Step Details

1. Execute the prediction step normally, that is,

$$
\begin{aligned}
\check{\mathbf{x}}_{k} & =\mathbf{f}_{k-1}\left(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right), \\
\check{\mathbf{P}}_{k} & =\mathbf{F}_{k-1} \hat{\mathbf{P}}_{k-1} \mathbf{F}_{k-1}^{\top}+\mathbf{L}_{k-1} \mathbf{Q}_{k-1} \mathbf{L}_{k-1}^{\top},
\end{aligned}
$$

and set the linearization point to $\hat{\mathbf{x}}_{k, \text { lin }}=\check{\mathbf{x}}_{k}$.
2. Compute

$$
\begin{aligned}
\mathbf{H}_{k} & =\left.\frac{\partial \mathbf{g}_{k}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right)}{\partial \mathbf{x}_{k}}\right|_{\hat{\mathbf{x}}_{k, \text { lin }, 0}}, \\
\mathbf{M}_{k} & =\left.\frac{\partial \mathbf{g}_{k}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right)}{\partial \mathbf{v}_{k}}\right|_{\hat{\mathbf{x}}_{k, \text { lin }}, \mathbf{0}} .
\end{aligned}
$$

3. Compute

$$
\begin{aligned}
\mathbf{K}_{k} & =\check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}\left(\mathbf{H}_{k} \check{\mathbf{P}}_{k} \mathbf{H}_{k}^{\top}+\mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top}\right)^{-1} \\
\hat{\mathbf{x}}_{k} & =\check{\mathbf{x}}_{k}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\left(\mathbf{g}\left(\hat{\mathbf{x}}_{k, \text { lin }}, \mathbf{0}\right)+\mathbf{H}_{k}\left(\check{\mathbf{x}}_{k}-\hat{\mathbf{x}}_{k, \text { lin }}\right)\right)\right) .
\end{aligned}
$$

4. If $\left\|\hat{\mathbf{x}}_{k}-\hat{\mathbf{x}}_{k, \text { lin }}\right\|_{2} \geq \epsilon$ set $\hat{\mathbf{x}}_{k, \text { lin }}=\hat{\mathbf{x}}_{k}$ and go back to Step 2 .

- If $\left\|\hat{\mathbf{x}}_{k}-\hat{\mathbf{x}}_{k, \text { in }}\right\|_{2}<\epsilon$ go to time step $k+1$.

5. Compute

$$
\hat{\mathbf{P}}_{k}=\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \check{\mathbf{P}}_{k}\left(\mathbf{1}-\mathbf{K}_{k} \mathbf{H}_{k}\right)^{\top}+\mathbf{K}_{k} \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\top} \mathbf{K}_{k}^{\top}
$$

Questions

Thank you for your attention.

Questions?

james.richard.forbes@mcgill.ca

Presentation created using ${ }^{A T} T_{E} X$ and Beamer.

References

Material herein is based on $[1,2,3,4,5,6,7]$.

[1] T. D. Barfoot, "State estimation for aerospace vehicles; AER1513 course notes and experimental dataset," University of Toronto Institute for Aerospace Studies, AER 1513-002, Rev: 1.0, December 2009.
[2] R. Eustice, "NA568/EECS568 mobile robotics: Methods and algorithms," University of Michigan, 2015.
[3] T. D. Barfoot, State Estimation for Robotics. New York, NY: Cambridge University Press, 2017.
[4] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, NY: Academic Press, 1970.
[5] D. Simon, Optimal State Estimation. Hoboken, NJ: John Wiley \& Sons, Inc., 2006.
[6] R. F. Stengel, Optimal Control and Estimation. New York, NY: Dover, 1994.
[7] C. E. Rasmussen and C. K. Williams, Gaussian processes for Machine Learning. MIT press Cambridge, MA, 2006.

[^0]: ${ }^{1} \underline{\omega}^{b a}$ is the angular velocity of frame b relative to frame a. A rate gyro measures ${\underset{ }{\omega}}^{b a}$ (resolved in what frame?), and not a set of Euler angles, nor a set of Euler angle rates, nor a quaternion, nor a quaternion rate.

