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> Sensors rarely measure states of interest directly. How do we “back out
states that are not measured directly?
> Within an IMU there is a rate gyro, an accelerometer, and often a
magnetometer.
> The rate gyro measures g"“ (resolved in what frame?), not a set of Euler
angles 6%¢, not a quaternion q*¢, nor a DCM C,,, and not a set of
Euler-angle rates éba, not a quaternion rate %%, nor a DCM rate Cpa.!
> The accelerometer measures a, (resolved in what frame?), notg, and not
.
> A magnetometer measures m (resolved in what frame?), not 8°°.
» There’s no such thing as an “attitude sensor”.
» Sensor data is imperfect; noise corrupts all measurements, and some
measurements are (significantly) biased.
> Because noise and bias are random, we rely on concepts from probability
theory to describe the properties of noise and bias that we are interested
in filtering.

13“ is the angular velocity of frame b relative to frame a. A rate gyro measures gb“

(resolved in what frame?), and not a set of Euler angles, nor a set of Euler angle rates, nor a

quaternion, nor a quaternion rate.
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The Gaussian Distribution

» A continuous random variable is said to have a normal or Gaussian distribution if
the pdf associated with the random variable z is given by

-2
p(x;7,0°%) = L exp | — (2= 2) .
o V2mo? 202

> p(x; T, 0%) being a pdf means that

(o) _ =\2
/ . exp | — (z—2) de =1,
— V2102 202

where the mean is

and the variance is
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Figure: Gaussian pdfs where z = 2 and o takes on values of 1/3, 2/3, and 1.

Shown in Figure 1 are three normal distributions. The mean of each is
distribution is z = 2, while the standard deviation of each are 1/3, 2/3, and 1,
respectively.

A short-hand notation for indicating = is normally distributed is z ~ N (z, 02).
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The Multidimensional Case

» In the N-dimensional case, a continuous random column matrix x € R” is said to
have a normal or Gaussian distribution if the pdf associated with x is given by
— 1 T ~—1 —
X% Q) = ————ex (—l x—%)' Q x—x),
P%,Q) =~ exp (—3 (10T QT (- %)
where X is the mean and Q is the covariance matrix.

» The covariance matrix is symmetric and positive definite (thus ensuring Q is not
singular, and thus Q! exists).

»> Being a pdf, it can be shown that

/ﬂxﬁex ( %(X—X)TQfl(x—i))dx:l,

the mean is

- [ 1 1
X—lwximex ( 5

and the covariance is

(x-%TQ (x— %)) dx,
Q= / x—x)(x —%)" (ZW)%Vdethxp (—% x-x)"Q"! (X—i)) dx.

> A short-hand notation for indicating x is normally distributed is x ~ A/ (X, Q).
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The Static Case
» Consider 5 5
X T TT x
(s s ]) g
» Consider the affine estimator
x =Ky + £,
where x is the estimate of the state x given the measurement y.
» What form should K and £ take?

» How can a priori information, such as that given in (1), be used to generate the
estimated state x?

» Define the errore = x — x.
> An unbiased estimate is desired, meaning E [e] = 0.
» Using this definition,
0=Ex—%x|=FEx—Ky—¢ =E[x] - EKy] —£=p, — Kuy — £,
€= p, — Kpy.
» Thus, an unbiased estimator is of the form
x=Ky+¢
=Ky + pz — Kpy
= pa + K(y — py).
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» How should we pick K to provide a best estimate?

» Consider
P=FE[ee]
=E[x-%)(x—%)"]
= B [(x — po = K(y — 1)) (x — 1t = K(y — p1,))"]
:E[(X Nz X_Nw)]_E[(X_Nm - T]KT

E[(y = py)(x — po)] + KE [(y — 1) (y — uy)T] K'
=%, — %, K" - K=] +K%, K"

> Recall that tr(A) = tr(AT), tr(A + B) = tr(A) + tr(B) and that
tr(CD) = tr(DC) for all A,B € R"*", C € R™*™, D € R™*™,

> Write J(K) = tr(P) as
J(K) = tr(Zgp — Bg, K" —KZ], + K2, K")
= t1(Bae) — t1(BgyK') — tr(KX])) + tr(KS,,KT")
= t1(Bys) — 2t1(TyyK") + tr(K2,,K")
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> Consider a Taylor series expansion of a general function f(-) : R™ — R,

that is
o (ofx)7
15,7 9 (9%
J 0X+ 50x [8){( o B

where “H.O.T.” means “higher-order terms”, and

9 (of"
s ox\ 0x
are the Jacobain and Hessian of f(-) evaluated at x = x, respectfully.
> A necessary condition for x to be an extremum (either a maximum or a
minimum) is
ofx|  _
x|~ 0.

» When H > 0 then x corresponds to a minimum.

fx+0x) = f(X)+ [Bf(x) 0x+H.O.T.

ox

X=

9f(x)

X=X

/3D



> Consider K = K + 6K and a Taylor series expansion of J(-). To this end,

J(K + 6K) = tr(B4z) — 2tr(Bay (K + 6K) ") + tr((K + K) 2, (K + 6K) ")
tr(Sea) — 2tr(DeyK') — 2t1(Bay0K")
tr(K2,,K") + tr(K,,0K") + tr(6KZ,,K") + tr(6KZ,,0K")
tr(Tes) — 2tr(T4yK') + tr(KS,, K')

_|_

J(K)

— 2tr(24y0K") 4 2tr(KX,, 6K ") + tr(0KX,,0K")

= J(K) — 2tr(2,,0K' — K2,,0K") 4 tr(6KZ,,6K")
= J(K) = 2tr((Zsy — KByy)0K") + tr(dK=,,0K")

» Thus,
dIK)| - o (0J(K)T _
aK KoK - zzy szyv BK < 8K B - Eyy
— K=K
» Note, from the above derivation it follows that
otr(AXT) Otr(XAXT)
—ox AN Tax TEA

Don’t memorize the above derivative definitions . .. understand the fundamentals,
the bigger picture ... that being, perturbing the independent variable, a Taylor

series expansion, etc.
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For K to be an extremum,

K|
K | g
oy — K2y, =0,
K%, =3,
K=3%,%,

The Hessian is X, > 0. Thus, K = ,, %, ! corresponds to a minimum
of J(K) = tr(P).

In fact, because J(-) is convex, this minimum is a global minimum, and
thus an unique minimum.

Thus,

X = p, + Ky — py)
= po + 0y B (y — 1)
provides a best, unbiased, estimate of x given the measurement (or
realization) y and the a priori information given in (1).
Often we drop the “bar” and just write K = 3,3 .
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The Dynamic Case

» Consider a discrete-time system described by linear process
(a.k.a. motion) and measurement (a.k.a. observation) models,

Xp = Frp_1Xp—1 + Gr—1up—1 + Lg—1Wi—1, wi ~ N(0,Q),
Vi = Hpxy + Mg v, vi ~ N(0,Ry).

» Let x;, denote a state estimate. Can x;, be found

1. in an unbiased manner, and
2. in an optimal manner?

» What does the word “unbiased” mean? It means
Elé] =0, Vk=0,...,K,

where e, = x; — X.

» What does the word “optimal” mean? It means an objective function is
extremized (either minimized or maximized).

» BLUE — “best, linear, unbiased, estimator”.
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» Consider the predict-correct estimator structure,

X, = Fp_ X1+ Gk—luk—la
X, = Xg + Ki(yr — ¥&),

where

> X is the a priori, or predicted, state estimate,

> ¥, = HiX; is the predicted measurement, and

> Xy is the a posteriori, or corrected, state estimate.
» Define

> &, = X, — Xk, the a priori, or predicted, error,
P. = E [éxé;], the a priori, or predicted, covariance,
€, = Xy, — Xy, the a posteriori, or corrected, error,
P,=FE [ékél] , the a posteriori, or corrected, covariance,
Pr = Yr — Y& the innovation, or the residual,
Pk = B [pkpl], the covariance associated with the innovation, and
P = E [&.pj], the cross covariance.

vVvyVvVYVYyYyvyy
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» Given x;,_1, P,_1, and u,_1, the predicted state is
X, = Fp_1Xp—1 + Gr_qug—1.

» The predicted covariance is

il

X — Xk ek]

P, = E [&¢
E[(
E [(Fr—1Xk—1 + G101 + Ly_1wi—1 — Fr_1X — G_1u_1)é} |
B

Fio1é, 1 + Ly 1we )& Fl_ | + wkflkal)}
=F,_.E [ek_lek_l] Fl_ | +Fy_1E[é&_1w,_]Li_,
+ Ly E [wk_lél_l} Fi | +LeE [weawy | L,
=F, 1P F)_ | + L, QL]

where E [Wk_lé;i.—_l} =0,P,_=F [ék—lé;cr—l}! and

Qi1 =E [wpawi_,].
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> Given the prediction, X, a gain matrix K € R"=*™v, and the measurement yy, is
the correction x, = X + Ky (yx — ¥&) unbiased?

> Unbiased means FE [e;] = 0. Using this definition,
Eler] = E[xi — %] = E'[xe — Xx — Ki(yx — Y1)
=F [Xk — ik] — Ky FE [Hkxk + Mgvy — Hk}v(k}
=F [Xk — ik] - KkaE [Xk - ik] — KkMkE [Vk} = (1 — Kka)E [ék] . (2)
» Next, note that
E [ék] =F [Xk — )v(k}
= E [Fr—1Xp—1 + Gr—1up—1 + L 1Wi—1 — Fr_1Xp—1 — Gr_1ui—_1]
=Fi_1F [xk—1 — Xik—1] + Le—1 E [Wi—1] = Fr1 E [€x—1] - (3)

> Provided & ~ N (0,Py),?
> then E'[é;] = 0 from (
> then E'[é;] = 0 from (
> then E[é2] = 0 from (
> (
>

3)
2),
3)
2)

then E [éz] = 0 from

> then E'[eéx] =0 from (2), ...
» In turn, the estimate x; is unbiased.

280 ~ N (0, 139) does not mean that &y = 0; it means the pdf associated with ey has zero mean
and covariance Py.
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An Optimization Problem

» Consider the cost function
Jk(K;g) = tr(f’k),

where f’k =F {éké;} , ék =X — )A(k

o

Why minimize this cost function as a function of K ?

A. Doing so minimizes the error covariance, which in turn means minimizing
the uncertainty in the state-estimation error.

> First, what is P, = E [ékéﬂ ? Using

e, = X — X,
=x; — X — Ki (Y& — Y1)
= &, — KpHi(xx — X)) — KeMp vy,
— (1 - KyHy)én — KMy,
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» . ..it follows that
P,=FE [ékéﬂ
= E[(1 — KyHy)é), — KeMyvy) (6 (1 — HIK]) — viM/K])]
= E[(1 - KyHy)epe (1 - H{K]) — (1 — KyHy)é, v MiK[
—KiMiviél (1 — HIK}) + KpMgv,vi M{K] |
= (1 - KHy)E [epef] (1 - HIK]) — (1 - KHy)E [ev ] M{K[
—KiME [vié]] (1 - H]K]) + KMy E [viv] | M K]
= (1 - KpHp)Pp(1 — K Hy)" + KM R .M K],

where E [¢,v]]| = 0.
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» Using a slightly different form of Py,
f)k = Pk — PkHZK}; — KkaPk + K, (HkPkH;I; + MkRkM—,IC—) Kg,
then computing %I((K) and setting the result to zero gives

9J(K)
JK

= —2P,H] + 2K; (H;P;H] + M;R;M]) = 0.

» Rearranging, and solving for Ky, results in
K (H;P.H] + MR, M}) = P,H],
K = P.H] (HPH] + MR MY) (4)

> K, is called the Kalman gain.
> The inverse in (4) always exists. Why?
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An alternate form of the Kalman Gain
» The filter innovation is f)k =Y — Yk = H; (Xk — )V(k) + Mgvy = Hiér + Myvg.
» Consider

P = | [ékpl]
-F [ék (Hpér + Mkvk)T}
- E [éké};] H + E [ékvﬂ M
= P,Hy,
where E [&,vi] = 0 and E [éxé;] = Py.
» Similarly,
P = B [ pupi ]
=F [(Hkék + Mpvi) (Hiér + Mka)T}
—H,E [ékéZ] H! + H,E [éka] M) +M,E [vkéZ] H] + M,E [Vkvﬂ M/
= H; P H] + MR M/,

where E [&,vy] =0, Py = E [éx¢;], and Ry = E [vivy].
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» [t follows that

~ ~ —1
K, = P,H| (H,PH] + M;R;M])

~ ~ -1
— PXkYk PYkYk
k k :

» The a posteriori covariance can be written as
P, =P, - PH[K] — K;H,P;, + K;, (HyP,H + M;R,M]) K]
=P, - P,H] K] — K,H, P, + P,H]K]
=P, — K, H, Py,
= (1 - K,Hy) Py.
> Also, note that
. y T
P, =P, — K; (P:H))

—-p 713xkykpykyk—1px7«ﬂ
— Tk k k koo
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> Acommenton E [wy_ie]_;| = 0.
> Note that wi_1 impacts Xp Via Xy = Fr_1Xp—1 + Gr_1up_1 + Li_1Wg_1, and
Wi_2 impaCtS Xp_1 ViaXg—1 = Fr_oXg_2 + Lg_oWg_oa.
> wj_; does notimpact xi_1; Ly—1w,_1 is added to Fi_1x5_1.
»> Because ex_1 = Xx—1 — Xkx—1, and xi_1 is impacted by wy_o and not wy_1, it
follows that ex_; and w,_; are uncorrelated.
» Thus, E [wi_1ef_,] = 0.

> Acommenton E [év,] = 0.
> &, =xp — X = Fr_1ex_1 + Ly_1wi_1 Where
X = Fr_1Xg—1 + Gr—1up—1 + Lg_1Wi—1 and X = Fr_1X,—1 + Gr_1ux_1.
> ¢ is impacted by wi_1, but not by vy.
wi_1 and v} are uncorrelated, thus &, and v, are uncorrelated.
> It follows that E [éxvi] = 0.

v
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Summary of the Kalman Filter

System:

Initialization:

Prediction:

Correction:

Xk

Fr1Xp—1+Gr1up1 + L 1wy 1
Hix), + Mpvg

N(0,Qx)

N(0,Ry)

E [xo]

E [ (x0 — %) (x0 — fqﬂ

Fr_1Xp—1 + Gr_1up—1
Fi1Py_1F]_; + Ly 1Qp_1L}_,
H.P.H] + M, R,M]

P.H[V,'

Xi; + Kk (yx — ¥i)

(1 - KyHy)P,(1 — K Hy) " + KiM R M K]
Pr — Ky Hi Py
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Derivation of the Extended Kalman Filter (EKF)

» Consider a discrete-time system described by nonlinear process and
measurement (observation) models,

X = fo 1 (Xp—1, W1, Wi—1), wi, ~ N(0,Qy),
Yi = 8k (Xk, Vi), vi ~ N(0,Ry).

» To derive the EKF the nonlinear discrete-time system is linearized.

» Perform a Taylor series expansion in x;, wy, and v, about some nominal
Xj, Wi, Vi, such that

Xr = X + 5X;€,
Wi, = Wi + 0wy,

Vi = Vi + 6vg,

where 6xy, dwy, and dvy are perturbations.

» To be consistent with the assumed disturbance and noise (i.e., the
expected value of the disturbance and noise), w;, and v, are both zero,
that is, w,, = 0 and v;, = 0.
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» Perturbing the process model,

Xp = Xp + 0Xp = fo 1 (Xp—1,up—1, W—1) + Fr_10x4 1 + Ly—16wi—1 + H.O.T,,

where
_ Of o (Xp—1, 01, Wi 1)
Fi—1 = ox ’
k—1 Xp—1,Uk—1,Wk—1
Ofje—1(Xp—1,Up—1, Wg_1)
Ly = W
k-1 Xp—1,Uk—1,Wk—1

» Perturbing the measurement model,

Vi =¥ + Ve = 8k (Xk, Vi) + Hpoxy, + Mydvy, + HO.T.,

where
H, — 3gkéxk,vk) ’
Xk Xk, Vk
M, — 3gkéxk-,Vk)
Vk Xk, Vk

> Note L and M, must be full column and row rank, respectively.
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> Using x; = X + 0x; and wy, = wy, + 6wy, = 0 + dwy, and dropping H.O.T.,
rewrite the linearized process model as

Xp =fro1(Xp—1,0,-1,0) + F_ 10X 1 + Ly 10Wi_1
=1 (Xp—1,We—1,0) + Fr1(Xp—1 — Xp—1) + Le—1wi—1
=Fp_1Xp—1 + 1 (Xp—1,05-1,0) —Fp_1Xp 1 +Lp_1wiy

Uk —1

=Fp_1Xp_1 +up_1 + Lp_1Wg_1,

where u,;,_1 is known.

» In a similar fashion, using x; = Xx + 0x; and vi = Vi + v, = 0 4 dvg, and
dropping H.O.T., rewrite the linearized measurement model as

Vi = gk (Xk, 0) + Hy0xp + Myovy,
= 21 (Xk, 0) + Hp (X1, — X)) + My vy,
= Hpxy + g1 (X, 0) — HpX), +Mp vy,
B
= Hgxy + Bk + Mg Vi,

where (3, is known.
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The Prediction Step

» The prediction step is

X =Fp1Xp_1 + up_1,
Py =Fy 1P, F]_; +L;_1Qu1L]_,,
where F;,_1, u;_1, and L;_; are evaluated at the best prior estimate of
the state, x5 1 (i.e., Xx_1 replaces x;_1 iNn F_1, w1, and Ly_1).
» The computation of x;, above is equivalent to

X = Fr_iXp—1 +up—1
Fr1Xp—1+ (fom1(Xp—1,05-1,0) —Fp_1X;_1)

= fr_1(Xg—1,0x-1,0)

which is just the nonlinear discrete time process model evaluated at x;,_1,
Ui_—1, and wi_1 = 0.
> As with the Kalman filter, we perform a prediction step using the expected
value of the disturbance, wi_1 = 0.
> |t appears we are ignoring the disturbance, but we are not; if
wi_1 ~ N (Wi_1,Qr_1) then the prediction would be
Xp = fr—1(Rp—1, Wp—1, Wi—1).
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The Correction Step

» The correction is given by

V). = HyP H] + MR, M],
K, =P.H]V, ",
Xy, = Xi, + Ki(yr — ¥i),
P, = (1 - K H,)P.(1 — K. H,)" + K MR, MK}
= Pk — Kkapk - Iv)kH—]I;K—,I; + K}CVkK-IIC—,
where H;, and M, are evaluated at x;, (i.e., X; replaces x; in H, and My).
» The predicted measurement yy, is
yi. = Hixy, + By,

where H;, and 3;, are evaluated at x;.
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» The prediction measurement is equivalent to

Vi = Hik + By
= HpX; + (g8x(Xx, 0) — HiXy)
= 8k (ika 0)7

the nonlinear discrete-time measurement model evaluated at x;,, the a
priori state estimate.

> Again, we perform the correction step using the expected value of the noise,
Vi — 0.

> It appears we are ignoring the noise, but we are not; if vi, ~ AV'(vx, Ri) then
the correction would be y, = gi (X, Vi).

» The correction is then also given by

X = Xg + Ki(yr — V&),
=X; + Ky (yr — 86 (X4, 0)) .
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Summary of the Extended Kalman Filter

System: Xp = fr—1(Xg—1,U5—1,Wg_1)
Yo = 8r(Xk, Vi)
wir ~ N(0,Qp)
vi, ~ N(O,Ry)
Initialization: X0 = FE|[x(]
Py = E|(xo—%o)(x0— fio)q
Prediction: X = fr_1(Xk—1,05-1,0)
P, = F_ P F]_ +L;1Qu L],
Correction: V. = HiPH] + MR ,M]
K, = PHV,'
X = X+ Ki(yr — gr(Xx,0))
P, = (1-KH,)P,(1-K.Hp)" +K,MR.M] K]

= P, — K,H,P;
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The lterative EKF

» Recall that
H, — 08k (Xk, Vi)
an %10 ’
M, — 08k (Xk, Vi)
6vk 1,0 ’

which is to say that H; and M;, are computed using x;, after the prediction
step.

> Well, after the correction step we have a better estimate of the state,
namely x;.

» The idea behind the iterative EKF is to recompute H; and M;, using a
better estimate of the state, then recompute K, and then finally
recompute x; and Py.

» This process is repeated until convergence.
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Step-by-Step Details
1. Execute the prediction step normally, that is,
X =fr1(Xp—1,0-1,0),
Py =Fp 1P, F]_; + L, 1Qp L],
and set the linearization point to X, 1in = Xy.

2. Compute
H, — ogr (Xx, Vi) ’
OX, R0
M, — ogr (Xk, Vi)
avk R 1in,0
3. Compute

Ki = PoH] (H P H] + MRMY)
Xp = X + Ki(yr — (8(Xg 1in, 0) + Hi (X — Xp1in)))-
4. > If [|[Xk — X,un||, > € Set Xk 1in = Xx and go back to Step 2.
> If |Xk — Xp1in||, < € gO to time step k + 1.
5. Compute

P, = (1— K,Hy)Py (1 — KeHy,) T + KM, R M K]
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Questions

Thank you for your attention.

Questions?

james.richard.forbes@mcgill.ca

Presentation created using I5TEX and Beamer.
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