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- There are many
situations where traditional models are challenged - Large state spaces - Non-linear
dynamics - Discontinuous contacts
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What Problem is DeepRL Solving?

No feature engineering!

Figure: Deep Learning and Reinforcement Learning

The perception and planning problem in a more general way.
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What Problem is DeepRL Solving?

Sensor Motor Loop

Figure: Sensory motor loop

RL agents collect their own data to solve a task
I No need for expert data
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Supervised learning

given D = {xi, yi}
I learn to predict yi given xi, y ← f(x)

Assumptions in supervised learning
I Data is Independant and Identically

Distributed (IID)
F This is rarely the case in the real

world

I True optimal action y is known

Example:
I L(θ) = ||f(x|θ)− y||2
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Reinforcement Learning

Previous outputs influence future
inputs

I Data is not IID

Optimal action y is known
I Instead we have a scalar reward

function

reward function
I r ← R(s, a)
I weighted regression

Example:
I L(θ) = ||f(s|θ)− a||2R(s, a)
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What is Reinforcement Learning

Figure: First terms

at - Action
at - Continuous action
st - State
ot - Observation

π(at|ot, θ) policy
π(at|st, θ) fully observed policy

Figure: Markov property
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Reinforcement Learning Objective

Figure: Reinforcement Learning Environment

Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
unknown

(1)

RL objective is over this distribution

arg max
θ∗

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(2)
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Basic Reinforcement Learning Loop: (1) Collect Data

Figure: Sensory motor loop
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Basic Reinforcement Learning Loop: (1) Collect Data

Collect Data
import gym

env = gym.make("LunarLander-v2") ## Create an instance of the control environment

observation, info = env.reset(seed=42, return_info=True) ## Reset the environment to a safe state

buff = [] ## Array to store experience

for _ in range(1000):

env.render() ## Render the environment if desired

action = policy(observation) # User-defined policy function

next_observation, reward, done, info = env.step(action) ## Take a step in the env

buff.append([observation, action, reward, next_observation])

observation = next_observation

if done:

observation, info = env.reset(return_info=True) ## Reset if the robot has fallen

env.close()
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Basic Reinforcement Learning Loop: (2) Estimate Return/Score

Figure: Sensory motor loop

Estimate the return for θ

Figure: Policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(3)
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Basic Reinforcement Learning Loop: (3) Update The Policy

Figure: Sensory motor loop

Update the policy

Figure: Policy Gradient

θ ← θ + α∇θJ(θ)
α is the learning rate
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Basic Reinforcement Learning Loop: (3) Update The Policy

Figure: Sensory motor loop

Update the policy

Figure: Policy Gradient

θ ← θ + α∇θJ(θ)
α is the learning rate
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You need to train a model

Model-Based Reinforcement Learning (MBRL)
Why learn a model?

I For most problems the dynamics are unknown
I If we have st+1 = f(st,at) we can plan (see last week)

Then all we need to do is learn st+1 = f(st,at), that should be easy.

Basic MBRL
1 Collect experience < st+1, st,at >∈ Dtrainfrom the environment with π0(at|st)
2 Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3 Use f(st+1|st,at, θ) to plan high reward trajectories

(Wang et al., 2018)
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Model-Based Reinforcement Learning
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How Well Does Basic MBRL work

Not that well, why?

Basic MBRL
1: Collect experience < st+1, st,at >∈ Dtrainfrom the

environment with πrand(at|st)
2: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

3: Use f(st+1|st,at, θ) to plan high value trajectories

Goal: Move higher
But: πrand(at|st) 6= π(at|st, θ)

Problem grows with model complexity
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How to train a forward model

How to reduce πrand(at|st) 6= π(at|st, θ)
Ideas?

Need more on policy data [Dagger](Ross et al., 2011)

OnPolicy MBRL
1: Collect experience < st+1, st,at >∈ Dtrain from the environment with πrand(at|st)
2: while true do
3: Train θ to minimize

∑
i ||f(st,at, θ)− st+1||

4: Use f(st+1|st,at, θ) to plan high value trajectories
5: Collect experience < st+1, st,at >∈ Dtrainfrom the environment with f(st+1|st,at, θ)
6: end while

What is wrong with this algorithm?
I Hint: What objective is it optimizing?

(Deisenroth and Rasmussen, 2011; Chua et al., 2018; Hafner et al., 2019)
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Figure: Reinforcement Learning Environment

Distribution over trajectories p(τ |θ) using chain rule of probability

p(s1,a1, . . . , sT ,aT |θ)︸ ︷︷ ︸
p(τ |θ)

= p(s1)︸ ︷︷ ︸
Unknown

T∏
t=1

π(at|st, θ) p(st+1|st,at)︸ ︷︷ ︸
Now unknown

(4)

RL objective is over this distribution

arg max
θ∗

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
(5)

MBRL is not optimizing for this objective. (Joseph et al., 2013; Farahmand et
al., 2017; Janner et al., 2019; Grimm et al., 2020; Lambert et al., 2020; Nikishin et
al., 2022)
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The Policy Gradient

θ∗ = arg max
θ

Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
︸ ︷︷ ︸

J(θ)

(6)

How can we use this?

Approximate with samples from the
environment

Figure: Simple policy Gradient

J(θ) = Eτ∼p(τ |θ)

[∑
t

r(st,at)

]
≈ 1

N

N∑
n

T∑
t

r(sn,t,an,t) (7)

Unbiased estimate of the expected value
Simple to perform direct gradient ascent

Examples: Reinforce (Williams, 1992; Sutton et al., 2000)
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Basic Reinforcement Learning Loop: Update Policy
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Reducing Variance: Baselines

∇θJ(θ) = 1
N

∑N
i=1∇ log p(τ)r(τ)

Average reward
I bt = 1

N

∑N
i=1 r(τ)

I Reweight trajectories by their average
performance

Figure: Policy Gradient

Will this change the optimal policy?
E[∇θ log p(τ |θ)b] =

∫
p(τ)∇θ log p(τ |θ)bdτ

I Use identity∫
∇θp(τ |θ)bdτ = b∇θ

∫
p(τ |θ)dτ = b∇θ1 = 0

I Same optimal policy
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Glen Berseth (Université de Montréal) Robot Learning November 7, 2022 17 / 22



Load your robot model

Create a simulated environment for the control loop
I Or a real environment

Create a reward function
I Easy in simulation, often difficult in the real world

OpenAiGym API

env = gym.make(env_id)

env = gym.wrappers.RecordEpisodeStatistics(env)
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DeepRL and Robotics

OpenAIGym Wrappers for Preprocesing

## Deep Networks like outputs in [-1,1]

env = gym.wrappers.ClipAction(env)

## Deep Networks like inputs in [-1,1]

env = gym.wrappers.NormalizeObservation(env)

env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))

## DeepRL likes rewards [-1,1]

env = gym.wrappers.NormalizeReward(env, gamma=gamma)

env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))

This way learning rates, etc have meaning
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Many RL libraries to use

Stable Baselines: Good place to start
cleanrl: simple implimentations of RL algorithms
rlkit: Designed for robotics applications
tf agents: Based on deepmind applications
Many others..

Learn how to use RL first with simple examples
I See my class

Then upgrade to code for real experiments.
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DeepRL Tutorial

cleanrl:

Setup code here.
I https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble install.md

Fix code in ppo continuous action.py
I

https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo continuous action.py
I look for “TODO ##”
I Ask questions!
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Glen Berseth (Université de Montréal) Robot Learning November 7, 2022 21 / 22

https://github.com/milarobotlearningcourse/cleanrl/blob/master/roble_install.md
https://github.com/milarobotlearningcourse/cleanrl/blob/master/cleanrl/ppo_continuous_action.py


Scratch
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