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INTRODUCTION

ROUGH TERRAIN NAVIGATION

» Applications: Exploration, search and rescue, agriculture

» High level of uncertainty

* Continuous obstacles

Weed Cutter AGV Automated Underwater Vehicles (AUV)

3D Continuous Surface
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https://www.sustainability-times.com/impact/farm-robots-could-help-save-the-environment-or-further-destroy-it/
https://www.waterlinked.com/industries/search-and-rescue
https://www.researchgate.net/figure/An-example-of-binary-occupancy-map_fig1_361340101JC9uZnbxZADFQAAAAAdAAAAABAE

INTRODUCTION

LOCAL PLANNING IN UNKNOWN TERRAIN

Classic method requires prior knowledge of the terrain

Global planning not possible

Require multiple dynamic corrections with new data

Planning path toward target based on kinematic constraints
and surface geometry

1. Global Path Planning
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2. Local Path Planning

Curiosity Rover on Mars

Up to 20 minutes for signal to get to Earth.

_______
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https://www.researchgate.net/figure/Comparison-of-the-goals-of-global-and-local-path-planning-methods_fig2_379067609
https://whyy.org/segments/is-nasas-curiosity-rover-lonely-on-mars/
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INTRODUCTION

Ensure safety
Start position to goal position
Dodge obstacles and pitfalls

Move 1n ascending ground

FL

Self-delivery robot in pitfall

EHICLE CHALLENGES

Uber self-driving car flipped

* No Duckiebot was harmed during the making of this presentation.
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https://qz.com/942199/uber-suspended-its-self-driving-cars-after-one-flipped-over-in-tempe-arizona
https://www.shutterstock.com/image-photo/moving-selfdriving-delivery-robot-on-street-1433132075?dd_referrer=https%3A%2F%2Fwww.google.com%2F

INTRODUCTION

UNMANNED GROUND VEHICLE CHALLENGES




BACKGROUND

MARKQOV DECISION PROCESS (MDP)

» Agent interacts with environment to maximize

cumulative reward Value
. EC, Reference (Desired Trajectory)
 State (s;), Action (a;), Reward (1;44) “'I%‘DTI"J“!‘]"'[“]"T"" o
Current State I
. x(t)
* Discounted return: Gy = Yo ¥V *Tr4k41 /
» Action-value function q(s, a):
expected return from state-action pair ;]_ MPC computed
Implemented Input Input (T*) .
* Goal: Learn optimal policy n*(a|s) that maximizes th t+T, t+T  t+Ty ‘time

present future

expected return
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BACKGROUND

DEEP Q-NETWORK & RAINBOW

« Uses deep neural networks to approximate optimal action-value function §*(s, a)

» Rainbow integrates multiple DON improvements:

b Improved action'value funCtlon CStlmatlon [] White random features
L. Rotation F BB Colored covariances
* Increased Sample CfflClel’lCY dependence
* Better handling of sparse rewards
* More robust exploration r—> H H
» Achieved state-of-the-art performance
Converges to Converges to Converges to

rainbow kernel k; rainbow kernel k; rainbow kernel k
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https://arxiv.org/pdf/2305.18512

DEEP REINFORCEMENT LEARNING SOLUTION

PROBLEM FORMULATION

* UGV position: (x,y, yaw) configuration

Three actions: forward, right, left

Pitch Axis Center of

Gravity

+ Pitch

/& Roll

Roll Axis

Yaw Axis

Safety constraints: roll < 60°, pitch < 60°

Goal: construct safe path from start to goal position

Only angle to goal relative to heading 1s known

Example UGV Navigation Path

150 1

Fr-1.25

Elevation (m)

F—2.50

75 A

11/2/2025 12


https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/rotations.html

DEEP REINFORCEMENT LEARNING SOLUTION

X-RANGE SENSING INPUT

1. Zero-range: IMU only (roll, pitch, angle to goal)
2. Immediate-range: one-step look-ahead binary traversability
3. Local-range: 3.2m X 3.2m elevation map + IMU data

* Different mputs tested for various sensing capabilities
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" Sensing Input " Sensing Input e e

Local-Range Sensing Input
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DEEP REINFORCEMENT LEARNING SOLUTION

NETWORK ARCHITECTURE

Value stream Q value estimate
(FNN) per action
Based on Rainbow agent architecture = / | N
. : || =
LSTM layer to estimate underlying system state - —p| | (= E ol
Fully-connected layer after LSTM |
| I‘ =) >
Split into advantage and value streams (dueling networks) : : il
Outputs distribution of g-value estimates for each action | :
| L p
e-greedy exploration (Noisy Networks omitted) i s o N | P softmax
Advantage stream

(FNN)
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DEEP REINFORCEMENT LEARNING SOLUTION

REWARD FUNCTION

Spiral Trajectory Toward Goal

aaaaaaaaaaaa

* Inspired by round shooting target structure

* Goal surrounded by n concentric rings

* Positive reward (R,ing) fOr entering inner ring

G)

* Negative reward for exiting ring (prevents exploitation)
* Rings closer to goal have higher reward (controlled by «)
* Rgoa received when reaching e-environment around goal

» Episode terminates if roll/pitch exceeds safety threshold

Ty =

PPPPPPPP
Negative

(CV'}%ﬁnga
—Q }zring,

]%goaL

enters a ring
exits a ring
enters X,
elsewhere
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DEEP REINFORCEMENT LEARNING SOLUTION

MODEL TRAINING AND EVALUATION g

200 x 200 m? terrain with 0.025 x 0.025 m? cells

Random Gaussian hills and valleys for continuous terrain

Random start/ goal positions each episode

Max 1,500 timesteps per episode, 100,000 episodes max

Evaluated every 10,000 episodes on 100 test positions 1

Best parameters chosen
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EXPERIMENTS

BASELINE APPROACHES

» Baseline-1: Potential field + bearing-only navigation

» Attraction to goal + repulsion from high gradients

* Compares to zero-range sensing

U(x,y,yaw) = (heading(yaw))?+a - |[VT (x, y)|| - (cos(4 - (85 — yaw)))

X (m)

* Baseline-2: Ego-graph with candidate paths

* Depth-1: compares to immediate-range sensing

y (m)

* Depth-5: compares to local-range sensing

» Evaluates path cost, executes first action only

0.0 0.2 0.4 0.6
X (m)
Cost(path) — 2 heading(yawq) +a- ||VT(xq;yq)|| Baseline-Z Eco graph Of depth 5
gepath
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EXPERIMENTS

RESULTS

TABLE I

. . . PERFORMANCE OVER TEST PATHS
* DRL methods show significant improvement over

baselines Avoroach Success Avg Planning
il (%) Time (sec)

 Similar planning time for low-dimensional inputs = Bascline-] | 26 0.15
DRL Zero-range Sensing 48 0.24
« DRL exhibits more robust maneuvers and terrain = Bascline-2 Depth-| , 0l 0.73
. DRL Immediate Range Sensing 69 0.34
understanding Baseline-2 Depth-5 69 130
DRL Local Range (3m box centered) 77 1.51
DRL Local Range (3m box ahead) 82 1.72
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RESULTS

Zero Range Sensing
and Baseline-1

Immediate Range Sensing
and Baseline-2 (d=1)
and Zero Range Sensing
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RESULTS

Local Sensing 3 m Box Centered ga20
and Baseline-2 (d=5) -
and Immediate Range Sensing

Local Sensing 3x1(r}n1) Box Ahead
and Local Sensing 3 m Box Centered
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EXPERIMENTS

FAILURES

Two main failure modes (18% total failures):

1. Local minimum in broad high gradient areas (13%)

2. Pathological starting poses (5%) TABLE I
PERFORMANCE OVER TEST PATHS
Success Avg Planning
. Approach o .
Can be addressed with: — = e e
. . DRL Zero-range Sensing 48 0.24
* Increasing the sensing range Baseline2 Depth-] — %E
DRL Immediate Range Sensing 69 0.34
(]
GIObal path planner Baseline-2 Depth-5 69 130
: : ’ 13 : . DRL Local Range (3m box centered) 1.51
* Changing starting poses’ distribution DRL Local Range (3m box ahead) @ .
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DYNAMIC VALIDATION

» Terrain modeled in Gazebo ~+opiwesitysie

* Vehicle simulated with a Clearpath Robotics Jackal

 Incoporate vehicle dynamics, sliding and slipping

] Steps: 1, Real Time Fact

Clearpath Robotics Jackal in Gazebo

Gazebo Terrain
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https://www.clearpathrobotics.com/assets/guides/kinetic/jackal/simulation.html

DYNAMIC VALIDATION

ARCHITECTURE EXTENSION AND TRAINING

» Added geometric transformation between timesteps as mnput

« Action encoded as one-hot vector bt aiiaialatatiatsde® vinkainbn ity .
| roll O\ l
.. . . 4 [

* Implicitly learns to compensate for wheel slip and sliding . piteh () Al
it = SES T T T T T T | | anglerelative to goal O '

! WO Jarmn i | !

| ot OW ﬁ Modil g Al | | A () '

: angle relative to goal O ) > : | A:l e :

: ';E:lfl;' : ' previous action(one- O |

: | Module g ! : hot vector) / I

' - L) . 2

i O = ‘-‘°n°3te"3te: : Sp atial Input concatenate :

. . .

Tralmng Local-Range Sensing Input IL _________________ |

. . . Extended Local-Range Sensing Input
 Random friction value selected each episode s &P

* Different start position each episode for exploration
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DYNAMIC VALIDATION

RESULTS

Successfully navigates training terrain with dynamics
Generalizes to test terrain with different obstacles
Baseline-2 depth-5 fails in dynamically challenging areas

Extended architecture handles different friction levels

TABLE II

PERFORMANCE UNDER DIFFERENT FRICTION SETTINGS

Avoroach Original Extended
pproac Architecture  Architecture
High friction setting Success 10/10 10/10
Avg Timesteps 397.5 381.1
Medium friction setting  Success 4/10 10/10
Avg Timesteps 1960.5 628.8
Low friction setting Success 0/10 10/10
Avg Timesteps - 1046.7
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y (m)

DYNAMIC VALIDATION - RESULTS

-30 -20 -10

0 0 o an -30 -20 -10 0 10 20
xim) x (m)
DRL Method and Baseline-2 (d=5)

Path examples generated by DRL method

DRL method on binary and continuous obstacles

30
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DYNAMIC VALIDATION - RESULTS

* Circumnavigates boulders

 Stays clear of hole perimeters k
to avoid falling

* Climbs hills with spiral
trajectory to avoid high pitch
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SELF-ATTENTION MODULES

Attention mechanism models dependencies between sources Concat attention:
g(x,q@) = w' tanh(W (x;; )

Computes compatibility score between query and key-value pairs

Self-attention: query and key-value from same source

Increases explainability of learned policy -

roll O Attention
pitch O L Module JI

|

|

|

|

angle relative to goal O Y, :
[ Self-" | :
|

|

|

|

|

|

Attention
| Module !
b — — J
-_—) |/

1. Zero-Range 2.
Sensing Input Immediate-Range Local-Range Sensing Input
Sensing Input
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SELF-ATTENTION MODULES

DEEP REINFORCEMENT LEARNING

O !
Non-spatial input: FC layer — tanh — FC layer — sigmoid — @m@ ,

'FNN FNN

Spatial input: 1X1 convolution added before softmax

Element-wise multiplication of weights with input

Visualize attention through softmax outputs from module” | — —— — — — — — — — —— :

| O |
| O |

| tmx =) :‘. _
I O |
| FNN  FNN softmax |

|lxlconv

Spatial input
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SELF-ATTENTION MODULES

ATTENTION VISUALIZATION

32,5

32.0

» Height map attention focused on front-left/right areas s
« Attention on nearby high gradient hazardous areas 310
 Shifts as UGV proceeds through terrain A

30.0

Provides insight on relative importance of sensed inputs

29.5

Helps build trust by showing what agent focuses on

29.0

-16.5 -16.0 -15.5 -15.0 -145 -14.0 -13.5 -13.0

Most attended area is focused on nearby high gradients
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SELF-ATTENTION MODULES

DYNAMIC VALIDATION

» Attention module also works with discrete obstacles

* Focuses on hazardous areas to avoid (e.g., nearby
holes)

« Spatial input: focuses on nearby terrain features
* Non-spatial: consistent behavior across mput types

» Used for searching safe areas, not for
ascending/descending

Most attended area is focused on a nearby hole
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CONCLUSION

DRL approach for local rough terrain navigation

Improved planning time and success rate vs. traditional methods

/\,,,
<
\A

Captures vehicle dynamics and terrain interaction
Self-attention provides policy explainability

Future: integrate global planner, sim-to-real transfer
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