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ROUGH TERRAIN NAVIGATION

• Applications: Exploration, search and rescue, agriculture

• High level of uncertainty

• Continuous obstacles
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INTRODUCTION

A person standing on a hill with a yellow vehicle on it

AI-generated content may be incorrect.

A black and yellow robot in the water

AI-generated content may be incorrect.

Automated Underwater Vehicles (AUV)Weed Cutter AGV

A diagram of a robot and a mouse

AI-generated content may be incorrect.

3D Continuous Surface

2D Binary Surface

https://www.sustainability-times.com/impact/farm-robots-could-help-save-the-environment-or-further-destroy-it/
https://www.waterlinked.com/industries/search-and-rescue
https://www.researchgate.net/figure/An-example-of-binary-occupancy-map_fig1_361340101JC9uZnbxZADFQAAAAAdAAAAABAE


LOCAL PLANNING IN UNKNOWN TERRAIN

• Classic method requires prior knowledge of the terrain

• Global planning not possible

• Require multiple dynamic corrections with new data

• Planning path toward target based on kinematic constraints 

and surface geometry
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INTRODUCTION

A diagram of path planning and path planning

AI-generated content may be incorrect.

A dirt road in a desert

AI-generated content may be incorrect.

Curiosity Rover on Mars

Up to 20 minutes for signal to get to Earth.

https://www.researchgate.net/figure/Comparison-of-the-goals-of-global-and-local-path-planning-methods_fig2_379067609
https://whyy.org/segments/is-nasas-curiosity-rover-lonely-on-mars/


UNMANNED GROUND VEHICLE CHALLENGES

• Ensure safety

• Start position to goal position

• Dodge obstacles and pitfalls

• Move in ascending ground
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INTRODUCTION

* No Duckiebot was harmed during the making of this presentation.

Une image contenant plein air, Véhicule terrestre, véhicule, roue

Le contenu généré par l’IA peut être incorrect.

Une image contenant sol, plein air, plante, terre

Le contenu généré par l’IA peut être incorrect.

Uber self-driving car flipped

Self-delivery robot in pitfall

https://qz.com/942199/uber-suspended-its-self-driving-cars-after-one-flipped-over-in-tempe-arizona
https://www.shutterstock.com/image-photo/moving-selfdriving-delivery-robot-on-street-1433132075?dd_referrer=https%3A%2F%2Fwww.google.com%2F


UNMANNED GROUND VEHICLE CHALLENGES

11/2/2025 7

INTRODUCTION



MARKOV DECISION PROCESS (MDP)

• Agent interacts with environment to maximize 

cumulative reward

• State (𝑠𝑡), Action (𝑎𝑡), Reward (𝑟𝑡+1)

• Discounted return: 𝐺𝑡 = σ𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1

• Action-value function 𝑞(𝑠, 𝑎): 

expected return from state-action pair

• Goal: Learn optimal policy 𝜋∗(𝑎|𝑠) that maximizes 

expected return
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BACKGROUND



DEEP Q-NETWORK & RAINBOW

• Uses deep neural networks to approximate optimal action-value function ො𝑞∗(𝑠, 𝑎)

• Rainbow integrates multiple DQN improvements:

• Improved action-value function estimation

• Increased sample efficiency

• Better handling of  sparse rewards

• More robust exploration

• Achieved state-of-the-art performance
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BACKGROUND

https://arxiv.org/pdf/2305.18512


PROBLEM FORMULATION
• UGV position: (𝑥, 𝑦, 𝑦𝑎𝑤) configuration

• Three actions: forward, right, left

• Safety constraints: 𝑟𝑜𝑙𝑙 < 60°, 𝑝𝑖𝑡𝑐ℎ < 60°

• Goal: construct safe path from start to goal position

• Only angle to goal relative to heading is known
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DEEP REINFORCEMENT LEARNING SOLUTION

An airplane with directions

AI-generated content may be incorrect.

roll pitch

https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/rotations.html


X-RANGE SENSING INPUT

1. Zero-range: IMU only (roll, pitch, angle to goal)

2. Immediate-range: one-step look-ahead binary traversability

3. Local-range: 3.2𝑚 × 3.2𝑚 elevation map + IMU data

• Different inputs tested for various sensing capabilities
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DEEP REINFORCEMENT LEARNING SOLUTION

1. 2. 3.



NETWORK ARCHITECTURE

• Based on Rainbow agent architecture

• LSTM layer to estimate underlying system state

• Fully-connected layer after LSTM

• Split into advantage and value streams (dueling networks)

• Outputs distribution of q-value estimates for each action

• ε-greedy exploration (Noisy Networks omitted)
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DEEP REINFORCEMENT LEARNING SOLUTION



REWARD FUNCTION

• Inspired by round shooting target structure

• Goal surrounded by 𝑛 concentric rings

• Positive reward (𝑅𝑟ing) for entering inner ring

• Negative reward for exiting ring (prevents exploitation)

• Rings closer to goal have higher reward (controlled by 𝛼)

• 𝑅goal received when reaching 𝜀-environment around goal

• Episode terminates if  roll/pitch exceeds safety threshold
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DEEP REINFORCEMENT LEARNING SOLUTION



MODEL TRAINING AND EVALUATION

• 200 × 200 m² terrain with 0.025 × 0.025 m² cells

• Random Gaussian hills and valleys for continuous terrain

• Random start/goal positions each episode

• Max 1,500 timesteps per episode, 100,000 episodes max

• Evaluated every 10,000 episodes on 100 test positions

• Best parameters chosen
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DEEP REINFORCEMENT LEARNING SOLUTION



BASELINE APPROACHES

• Baseline-1: Potential field + bearing-only navigation

• Attraction to goal + repulsion from high gradients

• Compares to zero-range sensing

• Baseline-2: Ego-graph with candidate paths

• Depth-1: compares to immediate-range sensing

• Depth-5: compares to local-range sensing

• Evaluates path cost, executes first action only
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EXPERIMENTS

Baseline-1 Attraction forces to goal (center)

Baseline-2 Eco graph of depth 5cost(𝑝𝑎𝑡ℎ) =෍
𝑞∈𝑝𝑎𝑡ℎ

heading(𝑦𝑎𝑤𝑞) + α ∙ ∇𝑇(𝑥𝑞, 𝑦𝑞)

𝑈(𝑥, 𝑦, 𝑦𝑎𝑤) = (heading(𝑦𝑎𝑤))2+α ∙ ∇𝑇(𝑥, 𝑦) ∙ (cos(4 ∙ (𝜃𝐺 − 𝑦𝑎𝑤)))



RESULTS

• DRL methods show significant improvement over 

baselines

• Similar planning time for low-dimensional inputs

• DRL exhibits more robust maneuvers and terrain 

understanding
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EXPERIMENTS
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RESULTS

Zero Range Sensing 

and Baseline-1

Immediate Range Sensing 

and Baseline-2 (d=1) 

and Zero Range Sensing
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RESULTS

Local Sensing 3 m Box Centered 

and Baseline-2 (d=5) 

and Immediate Range Sensing

Local Sensing 3 m Box Ahead 

and Local Sensing 3 m Box Centered



FAILURES

Two main failure modes (18% total failures):

1. Local minimum in broad high gradient areas (13%)

2. Pathological starting poses (5%)

Can be addressed with:

• Increasing the sensing range

• Global path planner

• Changing starting poses’ distribution
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EXPERIMENTS



DYNAMIC VALIDATION

• Terrain modeled in Gazebo

• Vehicle simulated with a Clearpath Robotics Jackal

• Incoporate vehicle dynamics, sliding and slipping
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A computer screen shot of a machine

AI-generated content may be incorrect.

Clearpath Robotics Jackal in Gazebo

Gazebo Terrain

https://www.clearpathrobotics.com/assets/guides/kinetic/jackal/simulation.html


ARCHITECTURE EXTENSION AND TRAINING

• Added geometric transformation between timesteps as input

• Action encoded as one-hot vector

• Implicitly learns to compensate for wheel slip and sliding

Training:

• Random friction value selected each episode

• Different start position each episode for exploration
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DYNAMIC VALIDATION

Extended Local-Range Sensing Input



RESULTS

• Successfully navigates training terrain with dynamics

• Generalizes to test terrain with different obstacles

• Baseline-2 depth-5 fails in dynamically challenging areas

• Extended architecture handles different friction levels
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DYNAMIC VALIDATION
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DYNAMIC VALIDATION - RESULTS

DRL Method and Baseline-2 (d=5) Path examples generated by DRL method

DRL method on binary and continuous obstacles
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DYNAMIC VALIDATION - RESULTS

• Circumnavigates boulders

• Stays clear of  hole perimeters 

to avoid falling

• Climbs hills with spiral 

trajectory to avoid high pitch



SELF-ATTENTION MODULES

• Attention mechanism models dependencies between sources

• Computes compatibility score between query and key-value pairs

• Self-attention: query and key-value from same source

• Increases explainability of learned policy
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1. 2. 3.

Concat attention: 

𝑔(𝑥𝑖, 𝑞) = 𝑤𝑇 tanh(𝑊(𝑥𝑖; 𝑞))



DEEP REINFORCEMENT LEARNING

• Non-spatial input: FC layer → tanh → FC layer → sigmoid

• Spatial input: 1×1 convolution added before softmax

• Element-wise multiplication of  weights with input

• Visualize attention through softmax outputs from modules
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SELF-ATTENTION MODULES

Non-spatial input

Spatial input



ATTENTION VISUALIZATION

• Height map attention focused on front-left/right areas

• Attention on nearby high gradient hazardous areas

• Shifts as UGV proceeds through terrain

• Provides insight on relative importance of  sensed inputs

• Helps build trust by showing what agent focuses on
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SELF-ATTENTION MODULES

Most attended area is focused on nearby high gradients



DYNAMIC VALIDATION

• Attention module also works with discrete obstacles

• Focuses on hazardous areas to avoid (e.g., nearby 

holes)

• Spatial input: focuses on nearby terrain features

• Non-spatial: consistent behavior across input types

• Used for searching safe areas, not for 

ascending/descending
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SELF-ATTENTION MODULES

Most attended area is focused on a nearby hole



CONCLUSION

• DRL approach for local rough terrain navigation

• Improved planning time and success rate vs. traditional methods

• Captures vehicle dynamics and terrain interaction

• Self-attention provides policy explainability

• Future: integrate global planner, sim-to-real transfer

11/2/2025 35


	Slide 1: Deep Reinforcement Learning for Safe Local Planning of a Ground Vehicle in Unknown Rough Terrain
	Slide 4: Rough Terrain Navigation 
	Slide 5: Local Planning in Unknown terrain
	Slide 6: Unmanned Ground Vehicle challenges
	Slide 7: Unmanned Ground Vehicle challenges
	Slide 9: Markov Decision Process (MDP)
	Slide 10: Deep Q-Network & Rainbow
	Slide 12: Problem Formulation 
	Slide 13: X-Range Sensing Input 
	Slide 14: Network Architecture 
	Slide 15: Reward Function 
	Slide 16: Model Training and Evaluation 
	Slide 18: Baseline Approaches 
	Slide 19: Results 
	Slide 20
	Slide 21
	Slide 22: Failures
	Slide 24: Dynamic Validation
	Slide 25: Architecture Extension and Training
	Slide 26: Results
	Slide 27
	Slide 28
	Slide 30: Self-Attention Modules
	Slide 31: Deep Reinforcement Learning 
	Slide 32: Attention Visualization
	Slide 33: Dynamic Validation
	Slide 35: Conclusion

